Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nano Lett ; 21(22): 9374-9380, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34726925

RESUMO

Nanopore blockade sensors were developed to address the challenges of sensitivity and selectivity for conventional nanopore sensors. To date, the parameters affecting the current of the sensor have not been elucidated. Herein, the impacts of nanopore size and charge and the shape, size, surface charge, and aggregation state of magnetic nanoparticles were assessed. The sensor was tolerant to all parameters contrary to predictions from electronic or geometric arguments on the current change. Theoretical models showed the greater importance of the polymers around nanoparticles and the access resistance of nanopores to the current, when compared with translocation-based nanopore sensors. The signal magnitude was dominated by the change in access resistance of ∼4.25 MΩ for all parameters, resulting in a robust system. The findings provide understandings of changes in current when nanopores are blocked, like in RNA trapping or nanopore blockade sensors, and are important for designing sensors based on nanopore blockades.


Assuntos
Nanopartículas , Nanoporos , Polímeros
3.
Chem Commun (Camb) ; 57(97): 13142-13145, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34807966

RESUMO

A new type of gold-coated magnetic nanoparticle with strongly magnetic zero-valent iron core-iron oxide shell were synthesized. The small size of the magnetic cores and the zero-valent iron ensured superparamagnetic behaviour and high saturation magnetization of the overall nanoparticles. The nanoparticles showed stability against magnetic aggregation and good colloidal stability, which is important for many biomedical applications.

4.
Chem Commun (Camb) ; 56(24): 3504-3507, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32101181

RESUMO

Nanoparticle tracers with small sizes and large magnetization are critical for biomedical imaging and especially for magnetic particle imaging (MPI). Small size is important for accessing future intracellular and neurological in vivo applications Here, we show <15 nm nanoparticles made of zero valent iron cores, iron oxide shells and coated with a strongly binding brush co-polymer are effective MPI tracers. The small nanoparticle cores create a hydrodynamic diameter that is half of the state-of-the-art iron oxide tracers while the strongly magnetic zero valent iron maintains similar MPI signal magnitude and resolution.

5.
Adv Mater ; 31(48): e1904385, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31538371

RESUMO

Magnetic nanoparticles (MNPs) are of high significance in sensing as they provide viable solutions to the enduring challenges related to lower detection limits and nonspecific effects. The rapid expansion in the applications of MNPs creates a need to overview the current state of the field of MNPs for sensing applications. In this review, the trends and concepts in the literature are critically appraised in terms of the opportunities and limitations of MNPs used for the most advanced sensing applications. The latest progress in MNP sensor technologies is overviewed with a focus on MNP structures and properties, as well as the strategies of incorporating these MNPs into devices. By looking at recent synthetic advancements, and the key challenges that face nanoparticle-based sensors, this review aims to outline how to design, synthesize, and use MNPs to make the most effective and sensitive sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...