Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 8(2)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37092393

RESUMO

In this article, a chaotic computing paradigm is investigated for the parameter estimation of the autoregressive exogenous (ARX) model by exploiting the optimization knacks of an improved chaotic grey wolf optimizer (ICGWO). The identification problem is formulated by defining a mean square error-based fitness function between true and estimated responses of the ARX system. The decision parameters of the ARX model are calculated by ICGWO for various populations, generations, and noise levels. The comparative performance analyses with standard counterparts indicate the worth of the ICGWO for ARX model identification, while the statistical analyses endorse the efficacy of the proposed chaotic scheme in terms of accuracy, robustness, and reliability.

2.
Sensors (Basel) ; 21(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34960574

RESUMO

Visual object tracking (VOT) is a vital part of various domains of computer vision applications such as surveillance, unmanned aerial vehicles (UAV), and medical diagnostics. In recent years, substantial improvement has been made to solve various challenges of VOT techniques such as change of scale, occlusions, motion blur, and illumination variations. This paper proposes a tracking algorithm in a spatiotemporal context (STC) framework. To overcome the limitations of STC based on scale variation, a max-pooling-based scale scheme is incorporated by maximizing over posterior probability. To avert target model from drift, an efficient mechanism is proposed for occlusion handling. Occlusion is detected from average peak to correlation energy (APCE)-based mechanism of response map between consecutive frames. On successful occlusion detection, a fractional-gain Kalman filter is incorporated for handling the occlusion. An additional extension to the model includes APCE criteria to adapt the target model in motion blur and other factors. Extensive evaluation indicates that the proposed algorithm achieves significant results against various tracking methods.


Assuntos
Algoritmos , Dispositivos Aéreos não Tripulados , Movimento (Física) , Software , Visão Ocular
3.
Biomed Res Int ; 2021: 6638588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954189

RESUMO

Magnetic Resonance Imaging (MRI) is an important yet slow medical imaging modality. Compressed sensing (CS) theory has enabled to accelerate the MRI acquisition process using some nonlinear reconstruction techniques from even 10% of the Nyquist samples. In recent years, interpolated compressed sensing (iCS) has further reduced the scan time, as compared to CS, by exploiting the strong interslice correlation of multislice MRI. In this paper, an improved efficient interpolated compressed sensing (EiCS) technique is proposed using radial undersampling schemes. The proposed efficient interpolation technique uses three consecutive slices to estimate the missing samples of the central target slice from its two neighboring slices. Seven different evaluation metrics are used to analyze the performance of the proposed technique such as structural similarity index measurement (SSIM), feature similarity index measurement (FSIM), mean square error (MSE), peak signal to noise ratio (PSNR), correlation (CORR), sharpness index (SI), and perceptual image quality evaluator (PIQE) and compared with the latest interpolation techniques. The simulation results show that the proposed EiCS technique has improved image quality and performance using both golden angle and uniform angle radial sampling patterns, with an even lower sampling ratio and maximum information content and using a more practical sampling scheme.


Assuntos
Algoritmos , Compressão de Dados , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos
4.
Sensors (Basel) ; 21(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920648

RESUMO

Despite eminent progress in recent years, various challenges associated with object tracking algorithms such as scale variations, partial or full occlusions, background clutters, illumination variations are still required to be resolved with improved estimation for real-time applications. This paper proposes a robust and fast algorithm for object tracking based on spatio-temporal context (STC). A pyramid representation-based scale correlation filter is incorporated to overcome the STC's inability on the rapid change of scale of target. It learns appearance induced by variations in the target scale sampled at a different set of scales. During occlusion, most correlation filter trackers start drifting due to the wrong update of samples. To prevent the target model from drift, an occlusion detection and handling mechanism are incorporated. Occlusion is detected from the peak correlation score of the response map. It continuously predicts target location during occlusion and passes it to the STC tracking model. After the successful detection of occlusion, an extended Kalman filter is used for occlusion handling. This decreases the chance of tracking failure as the Kalman filter continuously updates itself and the tracking model. Further improvement to the model is provided by fusion with average peak to correlation energy (APCE) criteria, which automatically update the target model to deal with environmental changes. Extensive calculations on the benchmark datasets indicate the efficacy of the proposed tracking method with state of the art in terms of performance analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...