Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 28(Pt 1): 158-168, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399564

RESUMO

Many scientific questions require X-ray experiments conducted at varying temperatures, sometimes combined with the application of electric fields. Here, a customized sample chamber developed for beamlines P23 and P24 of PETRA III at DESY to suit these demands is presented. The chamber body consists mainly of standard vacuum parts housing the heater/cooler assembly supplying a temperature range of 100 K to 1250 K and an xyz manipulator holding an electric contact needle for electric measurements at both high voltage and low current. The chamber is closed by an exchangeable hemispherical dome offering all degrees of freedom for single-crystal experiments within one hemisphere of solid angle. The currently available dome materials (PC, PS, PEEK polymers) differ in their absorption and scattering characteristics, with PEEK providing the best overall performance. The article further describes heating and cooling capabilities, electric characteristics, and plans for future upgrades of the chamber. Examples of applications are discussed.

2.
Phys Chem Chem Phys ; 22(32): 17781-17790, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32589174

RESUMO

Pyroelectrocatalysis is the conversion of thermal energy directly into chemical energy. On the background of renewable energies and the need for efficient industrial processes, the conversion of waste heat into hydrogen is of special relevance. Since the reported thermodynamic cycles for pyroelectric energy harvesting do not fit the conditions encountered in a reactive medium such as water appropriately, we describe a new thermodynamic charge-voltage-cycle characterised by fixed upper and lower potentials. These threshold potentials comprise the redox potential of the reaction of interest - here the hydrogen evolution reaction - as well as an overpotential mainly dictated by the temperature-induced bending of electronic bands in the pyroelectric semiconductor. Because polarisation changes below the threshold are useless for chemical reactions, material properties as well as process conditions have to be chosen accordingly. In particular the particle size along with the temperature difference are shown to determine the conversion efficiency.

3.
Nanomaterials (Basel) ; 10(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244356

RESUMO

The nickel monogermanide (NiGe) phase is known for its electrical properties such as low ohmic and low contact resistance in group-IV-based electronics. In this work, thin films of nickel germanides (Ni-Ge) were formed by magnetron sputtering followed by flash lamp annealing (FLA). The formation of NiGe was investigated on three types of substrates: on amorphous (a-Ge) as well as polycrystalline Ge (poly-Ge) and on monocrystalline (100)-Ge (c-Ge) wafers. Substrate and NiGe structure characterization was performed by Raman, TEM, and XRD analyses. Hall Effect and four-point-probe measurements were used to characterize the films electrically. NiGe layers were successfully formed on different Ge substrates using 3-ms FLA. Electrical as well as XRD and TEM measurements are revealing the formation of Ni-rich hexagonal and cubic phases at lower temperatures accompanied by the formation of the low-resistivity orthorhombic NiGe phase. At higher annealing temperatures, Ni-rich phases are transforming into NiGe, as long as the supply of Ge is ensured. NiGe layer formation on a-Ge is accompanied by metal-induced crystallization and its elevated electrical resistivity compared with that of poly-Ge and c-Ge substrates. Specific resistivities for 30 nm Ni on Ge were determined to be 13.5 µΩ·cm for poly-Ge, 14.6 µΩ·cm for c-Ge, and 20.1 µΩ·cm for a-Ge.

4.
Nat Commun ; 9(1): 178, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330508

RESUMO

Physical properties of crystalline materials often manifest themselves as atomic displacements either away from symmetry positions or driven by external fields. Especially the origin of multiferroic or magnetoelectric effects may be hard to ascertain as the related displacements can reach the detection limit. Here we present a resonant X-ray crystal structure analysis technique that shows enhanced sensitivity to minute atomic displacements. It is applied to a recently found crystalline modification of strontium titanate that forms in single crystals under electric field due to oxygen vacancy migration. The phase has demonstrated unexpected properties, including piezoelectricity and pyroelectricity, which can only exist in non-centrosymmetric crystals. Apart from that, the atomic structure has remained elusive and could not be obtained by standard methods. Using resonant X-ray diffraction, we determine atomic displacements with sub-picometer precision and show that the modified structure of strontium titanate corresponds to that of well-known ferroelectrics such as lead titanate.

5.
J Phys Condens Matter ; 28(22): 225001, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27173497

RESUMO

Oxygen migration in perovskites is well known to occur via vacancies along the TiO6 octahedron edges. Ionic conduction depends further on the orientation of the crystal in the electric field. To study the anisotropy in cubic SrTiO3 single crystals, temperature-dependent electroformation measurements ranging from 11 °C to 50 °C have been conducted for representative crystallographic directions within the crystal system. Electroformation of pure SrTiO3 follows an Arrhenius behavior, implying an ionic migration process of intrinsic oxygen defects. Activation energies E A for oxygen vacancy migration have been determined to 0.70 eV for [Formula: see text] and [Formula: see text] directions in contrast to 0.77 eV for [Formula: see text]. Mobility of oxygen vacancies is enhanced in [Formula: see text] compared to [Formula: see text] and [Formula: see text] by up to half an order of magnitude. A migration model based on atomistic migration paths and their multiplicities accounts for these experimental variations in mobility.

6.
J Appl Crystallogr ; 48(Pt 2): 393-400, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25844077

RESUMO

Different physical vapor deposition methods have been used to fabricate strontium titanate thin films. Within the binary phase diagram of SrO and TiO2 the stoichiometry ranges from Ti rich to Sr rich, respectively. The crystallization of these amorphous SrTiO3 layers is investigated by in situ grazing-incidence X-ray diffraction using synchrotron radiation. The crystallization dynamics and evolution of the lattice constants as well as crystallite sizes of the SrTiO3 layers were determined for temperatures up to 1223 K under atmospheric conditions applying different heating rates. At approximately 473 K, crystallization of perovskite-type SrTiO3 is initiated for Sr-rich electron beam evaporated layers, whereas Sr-depleted sputter-deposited thin films crystallize at 739 K. During annealing, a significant diffusion of Si from the substrate into the SrTiO3 layers occurs in the case of Sr-rich composition. This leads to the formation of secondary silicate phases which are observed by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...