Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38915555

RESUMO

LMNA -Related Dilated Cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C ( LMNA ) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. Molecular mechanisms of disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA -Related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (4 Patient and 8 Control) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for Cardiac Progenitors to Cardiomyocytes (CM) and Epicardium-Derived Cells (EPDC). Data integration and comparative analyses of Patient and Control cells found cell type and lineage differentially expressed genes (DEG) with enrichment to support pathway dysregulation. Top DEG and enriched pathways included: 10 ZNF genes and RNA polymerase II transcription in Pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CM; LMNA and epigenetic regulation and DDIT4 and mTORC1 signaling in EPDC. Top DEG also included: XIST and other X-linked genes, six imprinted genes: SNRPN , PWAR6 , NDN , PEG10 , MEG3 , MEG8 , and enriched gene sets in metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model.

2.
Ann Biomed Eng ; 49(12): 3524-3539, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34585335

RESUMO

Genetic mutations to the Lamin A/C gene (LMNA) can cause heart disease, but the mechanisms making cardiac tissues uniquely vulnerable to the mutations remain largely unknown. Further, patients with LMNA mutations have highly variable presentation of heart disease progression and type. In vitro patient-specific experiments could provide a powerful platform for studying this phenomenon, but the use of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) introduces heterogeneity in maturity and function thus complicating the interpretation of the results of any single experiment. We hypothesized that integrating single cell RNA sequencing (scRNA-seq) with analysis of the tissue architecture and contractile function would elucidate some of the probable mechanisms. To test this, we investigated five iPSC-CM lines, three controls and two patients with a (c.357-2A>G) mutation. The patient iPSC-CM tissues had significantly weaker stress generation potential than control iPSC-CM tissues demonstrating the viability of our in vitro approach. Through scRNA-seq, differentially expressed genes between control and patient lines were identified. Some of these genes, linked to quantitative structural and functional changes, were cardiac specific, explaining the targeted nature of the disease progression seen in patients. The results of this work demonstrate the utility of combining in vitro tools in exploring heart disease mechanics.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Lamina Tipo A/genética , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Adulto , Idoso , Linhagem Celular , Humanos , Pessoa de Meia-Idade
3.
J Vis Exp ; (153)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31814616

RESUMO

Science relies on increasingly complex data sets for progress, but common data management methods such as spreadsheet programs are inadequate for the growing scale and complexity of this information. While database management systems have the potential to rectify these issues, they are not commonly utilized outside of business and informatics fields. Yet, many research labs already generate "medium sized", low velocity, multi-dimensional data that could greatly benefit from implementing similar systems. In this article, we provide a conceptual overview explaining how databases function and the advantages they provide in tissue engineering applications. Structural fibroblast data from individuals with a lamin A/C mutation was used to illustrate examples within a specific experimental context. Examples include visualizing multidimensional data, linking tables in a relational database structure, mapping a semi-automated data pipeline to convert raw data into structured formats, and explaining the underlying syntax of a query. Outcomes from analyzing the data were used to create plots of various arrangements and significance was demonstrated in cell organization in aligned environments between the positive control of Hutchinson-Gilford progeria, a well-known laminopathy, and all other experimental groups. In comparison to spreadsheets, database methods were enormously time efficient, simple to use once set up, allowed for immediate access of original file locations, and increased data rigor. In response to the National Institutes of Health (NIH) emphasis on experimental rigor, it is likely that many scientific fields will eventually adopt databases as common practice due to their strong capability to effectively organize complex data.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Engenharia Tecidual , Linhagem Celular , Humanos , Lamina Tipo A/genética , Estados Unidos
4.
Cell Rep ; 29(11): 3488-3505.e9, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31825831

RESUMO

Progressive organ fibrosis accounts for one-third of all deaths worldwide, yet preclinical models that mimic the complex, progressive nature of the disease are lacking, and hence, there are no curative therapies. Progressive fibrosis across organs shares common cellular and molecular pathways involving chronic injury, inflammation, and aberrant repair resulting in deposition of extracellular matrix, organ remodeling, and ultimately organ failure. We describe the generation and characterization of an in vitro progressive fibrosis model that uses cell types derived from induced pluripotent stem cells. Our model produces endogenous activated transforming growth factor ß (TGF-ß) and contains activated fibroblastic aggregates that progressively increase in size and stiffness with activation of known fibrotic molecular and cellular changes. We used this model as a phenotypic drug discovery platform for modulators of fibrosis. We validated this platform by identifying a compound that promotes resolution of fibrosis in in vivo and ex vivo models of ocular and lung fibrosis.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Fibrose Pulmonar/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Descoberta de Drogas/métodos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta/metabolismo
5.
PLoS One ; 12(11): e0188256, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29149195

RESUMO

Nuclear shape defects are a distinguishing characteristic in laminopathies, cancers, and other pathologies. Correlating these defects to the symptoms, mechanisms, and progression of disease requires unbiased, quantitative, and high-throughput means of quantifying nuclear morphology. To accomplish this, we developed a method of automatically segmenting fluorescently stained nuclei in 2D microscopy images and then classifying them as normal or dysmorphic based on three geometric features of the nucleus using a package of Matlab codes. As a test case, cultured skin-fibroblast nuclei of individuals possessing LMNA splice-site mutation (c.357-2A>G), LMNA nonsense mutation (c.736 C>T, pQ246X) in exon 4, LMNA missense mutation (c.1003C>T, pR335W) in exon 6, Hutchinson-Gilford Progeria Syndrome, and no LMNA mutations were analyzed. For each cell type, the percentage of dysmorphic nuclei, and other morphological features such as average nuclear area and average eccentricity were obtained. Compared to blind observers, our procedure implemented in Matlab codes possessed similar accuracy to manual counting of dysmorphic nuclei while being significantly more consistent. The automatic quantification of nuclear defects revealed a correlation between in vitro results and age of patients for initial symptom onset. Our results demonstrate the method's utility in experimental studies of diseases affecting nuclear shape through automated, unbiased, and accurate identification of dysmorphic nuclei.


Assuntos
Núcleo Celular/genética , Fibroblastos/metabolismo , Cardiopatias/diagnóstico , Lamina Tipo A/genética , Mutação , Progéria/diagnóstico , Adulto , Fatores Etários , Idade de Início , Idoso , Estudos de Casos e Controles , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Éxons , Feminino , Fibroblastos/ultraestrutura , Expressão Gênica , Cardiopatias/genética , Cardiopatias/patologia , Humanos , Processamento de Imagem Assistida por Computador , Lamina Tipo A/metabolismo , Masculino , Microscopia , Pessoa de Meia-Idade , Variações Dependentes do Observador , Forma das Organelas , Cultura Primária de Células , Progéria/genética , Progéria/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...