Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 29(25): 255402, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29616986

RESUMO

The pursuit of a promising replacement candidate for graphite as a Li-ion battery anode, which can satisfy both engineering criteria and market needs has been the target of researchers for more than two decades. In this work, we have investigated the synergistic effect of nitrogen-doped reduced graphene oxide (NrGO) and nanotubular TiO2 to achieve high rate capabilities with high discharge capacities through a simple, one-step and scalable method. First, nanotubes of hydrogen titanate were hydrothermally grown on the surface of NrGO sheets, and then converted to a mixed phase of TiO2-B and anatase (TB) by thermal annealing. Specific surface area, thermal gravimetric, structural and morphological characterizations were performed on the synthesized product. Electrochemical properties were investigated by cyclic voltammetry and cyclic charge/discharge tests. The prepared anode showed high discharge capacity of 150 mAh g-1 at 1 C current rate after 50 cycles. The promising capacity of synthesized NrGO-TB was attributed to the unique and novel microstructure of NrGO-TB in which long nanotubes of TiO2 have been grown on the surface of NrGO sheets. Such architecture synergistically reduces the solid-state diffusion distance of Li+ and increases the electronic conductivity of the anode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...