Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 9(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37888371

RESUMO

Standard Palm Oil (SPO) is widely used as a food ingredient partially due to its unique thermophysical properties. However, the American Heart Association recommends a saturated fat consumption of <5% of the caloric intake per day. The OxG Palm hybrid yields oil known as "palm oil with a higher content of oleic acid" (HOPO), with <35% SFA and >50% oleic acid. Characterizing novel high oleic oils is the starting point to find processes that can functionalize them such as oleogelation. This study compared the thermophysical properties of HOPO to SPO using Differential Scanning Calorimetry, shear rheology, polarized light microscopy, and texture analysis to characterize the differences between these oils. HOPO had a lower onset crystallization temperature (Δ7 °C) and its rheological behavior followed similar trends to SPO; however, large viscosity offsets were observed and were correlated to differences in crystallization temperatures. The maximum peak force of SPO was an order of magnitude higher than that of HOPO. Overall similar trends between the oils were observed, but differences in firmness, crystal morphology, and viscosity were not linearly correlated with the offset in crystallization temperature. This study quantified differences between these oils that will better enable industry to use HOPO in specific applications.

2.
J Biomol Struct Dyn ; : 1-9, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578048

RESUMO

Trichostatin A (TSA), a potential radiomitigator in pre-clinical models, inhibits the class I and II mammalian histone deacetylase (HDAC) enzyme family preferentially. In the current study, the ADME assessment of TSA was explored in terms of its binding affinity for serum protein via spectroscopic and molecular docking techniques. Fluorescence spectroscopy was used to examine changes in the protein microenvironment, and affinity was quantified in terms of binding constant and stoichiometry. Post binding conformational changes were observed using circular dichroism (CD) and UV-Visible spectroscopy. Specific binding was visualized using molecular docking to support experimental studies. UV-vis spectra demonstrated a blue shift in the interaction of TSA to BSA. The calculated binding constants ranged from 3.10 to 0.78 x 10 5(M-1) and quenching constants from 2.75 to 2.15 x 104 (l mol-1), indicating TSA has a strong binding affinity for BSA. Based on the FRET theory, the distance between BSA (donor) and TSA (acceptor) was calculated to be 2.83 nm. The Stern-Volmer plot revealed (Ksv) static quenching. Thermodynamic parameters were calculated, and a negative ΔG value showed that the interaction is spontaneous. The CD spectra analysis further revealed a change in the protein's secondary structure, indicating TSA-BSA interaction. The molecular docking studies also indicated strong binding affinity of TSA with BSA. The results indicate that good bio-availability of TSA is possible because of the spontaneous and strong binding affinity with BSA.Communicated by Ramaswamy H. Sarma.

3.
Biochemistry ; 61(14): 1473-1484, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35749234

RESUMO

Dialysis-related amyloidosis (DRA) is considered an inescapable consequence of renal failure. Upon prolonged hemodialysis, it involves accumulation of toxic ß2-microglobulin (ß2m) amyloids in bones and joints. Current treatment methods are plagued with high cost, low specificity, and low capacity. Through our in vitro and in cellulo studies, we introduce a peptidomimetic-based approach to help develop future therapeutics against DRA. Our study reports the ability of a nontoxic, core-modified, bispidine peptidomimetic analogue "B(LVI)2" to inhibit acid-induced amyloid fibrillation of ß2m (Hß2m). Using thioflavin-T, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transmission electron microscopy analysis, we demonstrate that B(LVI)2 delays aggregation lag time of Hß2m amyloid fibrillation and reduces the yield of Hß2m amyloid fibrils in a dose-dependent manner. Our findings suggest a B(LVI)2-orchestrated alteration in the route of Hß2m amyloid fibrillation resulting in the formation of noncytotoxic, morphologically distinct amyloid-like species. Circular dichroism data show gradual sequestration of Hß2m species in a soluble nonamyloidogenic noncytotoxic conformation in the presence of B(LVI)2. Dynamic light scattering measurements indicate incompetence of Hß2m species in the presence of B(LVI)2 to undergo amyloid-competent intermolecular associations. Overall, our study reports the antifibrillation property of a novel peptidomimetic with the potential to bring a paradigm shift in therapeutic approaches against DRA.


Assuntos
Amiloidose , Peptidomiméticos , Amiloide , Proteínas Amiloidogênicas , Amiloidose/tratamento farmacológico , Compostos Bicíclicos Heterocíclicos com Pontes , Humanos , Peptidomiméticos/farmacologia , Diálise Renal , Microglobulina beta-2
4.
Crit Rev Food Sci Nutr ; 62(4): 980-988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33938777

RESUMO

Underwater shockwave processing (USP) is a non-thermal food processing method where a high-energy impulse is generated near a food product submerged in a liquid. The resulting shockwave transfers energy to the food, and is used to improve quality, safety, and nutritional aspects. This review presents the origin and evolution of the technology, principles of shockwave generation, mechanism of action, and applications in the food industry. The most common food application of USP is currently meat tenderization, where it is used to improve the sensory characteristics of meat as a value-added process. The use of USP as a pretreatment process has also been investigated to increase the yield and nutritional value of extracted juice and oil via softening of plant tissues. This technique also has an impact on food-borne pathogens and spoilage microorganisms in food, however, it is more effective when combined with other hurdles. Major challenges facing the industrial implementation of underwater shockwave technology include the lack of appropriate packaging materials resistant to the disruptive effects of shockwaves, the capital investment required, and a lack of regulatory information pertaining to USP. So far, most studies of underwater shockwaves on food are at the laboratory scale and validation stage. Further research endeavors and collaboration between food scientists, engineers, and regulators are necessary to scale up this technology to industrial implementation.


Assuntos
Manipulação de Alimentos , Tecnologia de Alimentos , Indústria de Processamento de Alimentos , Carne/análise , Valor Nutritivo
5.
Curr Pharm Des ; 26(37): 4699-4711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32418522

RESUMO

Alzheimer's disease, categorized by the piling of amyloid-ß (Aß), hyperphosphorylated tau, PHFs, NFTs and mTOR hyperactivity, is a neurodegenerative disorder, affecting people across the globe. Osmolytes are known for osmoprotectants and play a pivotal role in protein folding, function and protein stability, thus, preventing proteins aggregation, and counteracting effects of denaturing solutes on proteins. Osmolytes (viz., sorbitol, inositol, and betaine) perform a pivotal function of maintaining homeostasis during hyperosmotic stress. The selective advantage of utilising osmolytes over inorganic ions by cells is in maintaining cell volume without compromising cell function, which is important for organs such as the brain. Osmolytes have been documented not only as neuroprotectors but they also seem to act as neurodegenerators. Betaine, sucrose and trehalose supplementation has been seen to induce autophagy thereby inhibiting the accumulation of Aß. In contrast, sucrose has also been associated with mTOR hyperactivity, a hallmark of AD pathology. The neuroprotective action of taurine is revealed when taurine supplementation is seen to inhibit neural damage, apoptosis and oxidative damage. Inositol stereoisomers (viz., scyllo-inositol and myo-inositol) have also been seen to inhibit Aß production and plaque formation in the brain, inhibiting AD pathogenesis. However, TMAO affects the aging process adversely by deregulating the mTOR signalling pathway and then kindling cognitive dysfunction via degradation of chemical synapses and synaptic plasticity. Thus, it can be concluded that osmolytes may act as a probable therapeutic approach for neurodevelopmental disorders. Here, we have reviewed and focussed upon the impact of osmolytes on mTOR signalling pathway and thereby its role in AD pathogenesis.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Autofagia , Humanos , Serina-Treonina Quinases TOR , Taurina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...