Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Uncertain Artif Intell ; 20212021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34512196

RESUMO

Uncertainty estimation in deep models is essential in many real-world applications and has benefited from developments over the last several years. Recent evidence [Farquhar et al., 2020] suggests that existing solutions dependent on simple Gaussian formulations may not be sufficient. However, moving to other distributions necessitates Monte Carlo (MC) sampling to estimate quantities such as the KL divergence: it could be expensive and scales poorly as the dimensions of both the input data and the model grow. This is directly related to the structure of the computation graph, which can grow linearly as a function of the number of MC samples needed. Here, we construct a framework to describe these computation graphs, and identify probability families where the graph size can be independent or only weakly dependent on the number of MC samples. These families correspond directly to large classes of distributions. Empirically, we can run a much larger number of iterations for MC approximations for larger architectures used in computer vision with gains in performance measured in confident accuracy, stability of training, memory and training time.

2.
Uncertain Artif Intell ; 20192019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32405271

RESUMO

There has recently been a concerted effort to derive mechanisms in vision and machine learning systems to offer uncertainty estimates of the predictions they make. Clearly, there are benefits to a system that is not only accurate but also has a sense for when it is not. Existing proposals center around Bayesian interpretations of modern deep architectures - these are effective but can often be computationally demanding. We show how classical ideas in the literature on exponential families on probabilistic networks provide an excellent starting point to derive uncertainty estimates in Gated Recurrent Units (GRU). Our proposal directly quantifies uncertainty deterministically, without the need for costly sampling-based estimation. We show that while uncertainty is quite useful by itself in computer vision and machine learning, we also demonstrate that it can play a key role in enabling statistical analysis with deep networks in neuroimaging studies with normative modeling methods. To our knowledge, this is the first result describing sampling-free uncertainty estimation for powerful sequential models such as GRUs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...