Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 943: 173830, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38866150

RESUMO

To better assess greenhouse gas (GHG) emissions from livestock folds in semi-arid steppe zones and reduce uncertainties in regional and national GHG emission inventories, we measured the fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from sheepfolds under contrasting management regimes (i.e., summer sheepfolds under continuous and rotational grazing strategies and the winter sheepfold) for 3 consecutive years. Our results showed that these GHG fluxes had high intra-annual and interannual variations, emphasizing the importance of multi-year measurement for achieving temporally representative annual budgets. Sheep presence and temperature appeared to be the key factors driving CH4, CO2 and N2O fluxes from sheepfolds, e.g., higher GHG emissions usually occurred in seasons with sheep presence. However, the sheepfold type exerted a distinct influence on the temperature sensitivity of GHG fluxes, i.e., the Q10 values for GHG fluxes were generally higher in summer sheepfolds than in winter sheepfold. The annual CH4, CO2 and N2O emissions for the 3 sheepfolds were estimated to be 1.5-16.5 kg C ha-1 yr-1 (or 1.9-2.6 g C yr-1sheep-1), 8.6-16.0 t C ha-1 yr-1 (or 5.1-6.6 kg C yr-1sheep-1) and 28.3-41.9 kg N ha-1 yr-1 (or 19.0-26.8 g N yr-1sheep-1), respectively. Averaging across the 3 years, the annual net GHG emissions (CH4 + CO2 + N2O) for all sheepfolds ranged from 47 to 71 t CO2-eq ha-1 yr-1 (or 27-36 kg CO2-eq yr-1 sheep-1), of which CO2 and N2O emissions contributed the most; moreover, the annual net GHG emissions had no significant differences between sheepfold types or grazing strategies. Given that local steppe soils have a lower magnitude of soil respiration (CO2) and N2O emissions and are also net sink for atmospheric CH4, the sheepfold sites in this region are undoubtedly one of the significant hotspots for GHG emissions and could be key areas to focus mitigation action.

2.
Glob Chang Biol ; 27(2): 327-339, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33073899

RESUMO

Increasing levels of atmospheric CO2 are expected to enhance crop yields and alter soil greenhouse gas fluxes from rice paddies. While elevated CO2 ( E CO 2 ) effects on CH4 emissions from rice paddies have been studied in some detail, little is known how E CO 2 might affect N2 O fluxes or yield-scaled emissions. Here, we report on a multi-site, multi-year in-situ FACE (free-air CO2 enrichment) study, aiming to determine N2 O fluxes and crop yields from Chinese subtropical rice systems as affected by E CO 2 . In this study, we tested various N fertilization and residue addition treatments, with rice being grown under either E CO 2 (+200 µmol/mol) or ambient control. Across the six site-years, rice straw and grain yields under E CO 2 were increased by 9%-40% for treatments fertilized with ≥150 kg N/ha, while seasonal N2 O emissions were decreased by 23%-73%. Consequently, yield-scaled N2 O emissions were significantly lower under E CO 2 . For treatments receiving insufficient fertilization (≤125 kg N/ha), however, no significant E CO 2 effects on N2 O emissions were observed. The mitigating effect of E CO 2 upon N2 O emissions is closely associated with plant N uptake and a reduction of soil N availability. Nevertheless, increases in yield-scaled N2 O emissions with increasing N surplus suggests that N surplus is a useful indicator for assessing N2 O emissions from rice paddies. Our findings indicate that with rising atmospheric CO2 soil N2 O emissions from rice paddies will decrease, given that the farmers' N fertilization is usually sufficient for crop growth. The expected decrease in N2 O emissions was calculated to compensate 24% of the simultaneously observed increase in CH4 emissions under E CO 2 . This shows that for an agronomic and environmental assessment of E CO 2 effects on rice systems, not only CH4 emissions, but also N2 O fluxes and yield-scaled emissions need to be considered for identifying most climate-friendly and economically viable options for future rice production.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , Dióxido de Carbono/análise , Metano/análise , Óxido Nitroso/análise , Solo
3.
PeerJ ; 7: e7655, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534866

RESUMO

Spartina alterniflora is one of the most noxious invasive plants in China and many other regions. Exploring environmentally friendly, economic and effective techniques for controlling Spartina alterniflora is of great significance for the management of coastal wetlands. In the present study, different approaches, including mowing and waterlogging, mowing and tilling and herbicide application, were used to control Spartina alterniflora. The results suggest that the integrated approach of mowing and waterlogging could eradicate Spartina alterniflora, the herbicide haloxyfop-r-methyl could kill almost all the Spartina alterniflora, and the integrated approach of mowing and tilling at the end of the growing season was a perfect way to inhibit the germination of Spartina alterniflora in the following year. However, no matter which control approach is adopted, secondary invasion of Spartina alterniflora must be avoided. Otherwise, all the efforts will be wasted in a few years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...