Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Microbiol ; 12: 659111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113325

RESUMO

Functional microorganisms play a vital role in removing environmental pollutants because of their diverse metabolic capability. Herein, a function-oriented fluorescence resonance energy transfer (FRET)-based graphene quantum dots (GQDs-M) probe was developed for the specific identification and accurate sorting of azo-degrading functional bacteria in the original location of environmental samples for large-scale culturing. First, nitrogen-doped GQDs (GQDs-N) were synthesized using a bottom-up strategy. Then, a GQDs-M probe was synthesized based on bonding FRET-based GQDs-N to an azo dye, methyl red, and the quenched fluorescence was recovered upon cleavage of the azo bond. Bioimaging confirmed the specific recognition capability of GQDs-M upon incubation with the target bacteria or environmental samples. It is suggested that the estimation of environmental functional microbial populations based on bioimaging will be a new method for rapid preliminary assessment of environmental pollution levels. In combination with a visual single-cell sorter, the target bacteria in the environmental samples could be intuitively screened at the single-cell level in 17 bacterial strains, including the positive control Shewanella decolorationis S12, and were isolated from environmental samples. All of these showed an azo degradation function, indicating the high accuracy of the single-cell sorting strategy using the GQDs-M. Furthermore, among the bacteria isolated, two strains of Bacillus pacificus and Bacillus wiedmannii showed double and triple degradation efficiency for methyl red compared to the positive control (strain S12). This strategy will have good application prospects for finding new species or high-activity species of specific functional bacteria.

3.
Bull Environ Contam Toxicol ; 97(1): 84-90, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27098253

RESUMO

Non-steroid anti-inflammatory drugs (NSAIDs) have been frequently detected in aquatic ecosystem and posed a huge risk to non-target organisms. The aim of this study was to evaluate the toxic effects of three typical NSAIDs, diclofenac (DFC), acetaminophen (APAP) and ibuprofen (IBP), toward the water flea Daphnia magna. All three NSAIDs showed remarkable time-dependent and concentration-dependent effects on D. magna, with DFC the highest and APAP the lowest toxic. Survival, growth and reproduction data of D. magna from all bioassays were used to determine the LC10 and LC50 (10 % lethal and median lethal concentrations) values of NSAIDs, as well as the EC10 and EC50 (10 % effect and median effect concentrations) values. Concentrations for the lethal and sublethal toxicity endpoints were mainly in the low ppm-range, of which reproduction was the most sensitive one, indicating that non-target organisms might be adversely affected by relevant ambient low-level concentrations of NSAIDs after long-time exposures.


Assuntos
Acetaminofen/toxicidade , Anti-Inflamatórios não Esteroides/toxicidade , Daphnia/efeitos dos fármacos , Diclofenaco/toxicidade , Ibuprofeno/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Daphnia/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos
4.
Arch Environ Contam Toxicol ; 71(1): 133-45, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26498763

RESUMO

Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds.


Assuntos
Dióxido de Carbono/química , Hidrocarbonetos Aromáticos/química , Modelos Químicos , Biodegradação Ambiental , Ecossistema , Monitoramento Ambiental , Organização para a Cooperação e Desenvolvimento Econômico , Medição de Risco
5.
Ecotoxicol Environ Saf ; 111: 123-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450924

RESUMO

4,4'-Diaminodiphenylmethane (MDA) is a widely used compound in industries. Studies on the biodegradability of MDA are necessary for environmental hazard identification and risk assessment. Previous studies have suggested that MDA was not readily biodegradable. In the present study, three batches of biodegradation tests (OECD 301A, B, D and F tests) were performed on MDA in June, August and December of 2012. MDA was found to be readily biodegradable and produced colored intermediates in the 301A, B and F test systems. MDA biodegradation measurements were consistent among the three batches of tests. Differences in the extent of biodegradation determined in different methods originated from different test conditions and assessment endpoints. The 301D test has stringent test conditions and is usually performed on chemicals that are toxic to microorganisms, so the test results obtained from 301D tests are less meaningful for evaluating the biodegradability of MDA. The low MDA biodegradation measurements in the 301B tests compared to the 301A and F tests were due to the assessment method, which did not account for MDA incorporation into biomass in its calculation of CO2 formation rate. The differences in the biodegradation rates, as measured by the different OECD 301 test systems, could also be related to the structure and properties of the chemical. For test substances that can be assessed by all OECD 301 test methods, the highest biodegradation values may be obtained from the 301A and F test methods. This study provides new information to assess the environmental fate in the risk assessment of MDA.


Assuntos
Compostos de Anilina/metabolismo , Carcinógenos/metabolismo , Biodegradação Ambiental , Biomassa , Organização para a Cooperação e Desenvolvimento Econômico , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...