Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931488

RESUMO

Piezoelectric materials, which exhibit a charge distribution across the surfaces in reaction to mechanical strain, find significant utility in actuation and sensing applications. Apart from actuation applications like acoustic devices, motors, and vibration damping, an emerging domain for ultrasonic actuators lies in additive manufacturing processes. Ultrasonic waves applied during solidification aim to modulate grain structure and minimize defects. This research focuses on a fixture designed to facilitate and optimize ultrasonic wave propagation through the build plate in laser powder bed fusion additive manufacturing by utilizing a piezoelectric transducer. Three implementations of piezoelectric transducers were evaluated based on their out-of-plane ultrasonic velocity transmissions. It was determined that a thin plate adhered to the surface of the piezoelectric transducer yielded the most favorable outcomes for implementation, achieving 100% transmission of velocity and energy. Preliminary analysis of melt pool morphology and defects in single-track laser scanning experiments demonstrated the impact of ultrasound on solidification, hinting at a novel approach to enhancing the printability of alloys in laser powder bed fusion additive manufacturing processes. The optimal fixture and the explored transducing efficiency could further guide advanced ultrasound testing to enable in situ defect and texture detection during the additive manufacturing processes.

2.
Sensors (Basel) ; 21(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203019

RESUMO

Acoustic waves are widely used in structural health monitoring (SHM) for detecting fatigue cracking. The strain energy released when a fatigue crack advances has the effect of exciting acoustic waves, which travel through the structures and are picked up by the sensors. Piezoelectric wafer active sensors (PWAS) can effectively sense acoustic waves due to fatigue-crack growth. Conventional acoustic-wave passive SHM, which relies on counting the number of acoustic events, cannot precisely estimate the crack length. In the present research, a novel method for estimating the crack length was proposed based on the high-frequency resonances excited in the crack by the energy released when a crack advances. In this method, a PWAS sensor was used to sense the acoustic wave signal and predict the length of the crack that generated the acoustic event. First, FEM analysis was undertaken of acoustic waves generated due to a fatigue-crack growth event on an aluminum-2024 plate. The FEM analysis was used to predict the wave propagation pattern and the acoustic signal received by the PWAS mounted at a distance of 25 mm from the crack. The analysis was carried out for crack lengths of 4 and 8 mm. The presence of the crack produced scattering of the waves generated at the crack tip; this phenomenon was observable in the wave propagation pattern and in the acoustic signals recorded at the PWAS. A study of the signal frequency spectrum revealed peaks and valleys in the spectrum that changed in frequency and amplitude as the crack length was changed from 4 to 8 mm. The number of peaks and valleys was observed to increase as the crack length increased. We suggest this peak-valley pattern in the signal frequency spectrum can be used to determine the crack length from the acoustic signal alone. An experimental investigation was performed to record the acoustic signals in crack lengths of 4 and 8 mm, and the results were found to match well with the FEM predictions.


Assuntos
Som , Vibração , Acústica , Fadiga , Humanos
3.
Sensors (Basel) ; 21(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924685

RESUMO

This paper presents a new technique for the extraction of high-order wave-damage interaction coefficients (WDIC) through modal decomposition. The frequency and direction dependent complex-valued WDIC are used to model the scattering and mode conversion phenomena of guided wave interaction with damage. These coefficients are extracted from the harmonic analysis of local finite element model (FEM) mesh with non-reflective boundaries (NRB) and they are capable of describing the amplitude and phase of the scattered waves as a function of frequency and direction. To extract the WDIC of each wave mode, all the possible propagating wave modes are considered to be scattered simultaneously from the damage and propagate independently. Formulated in frequency domain, the proposed method is highly efficient, providing an overdetermined equation system for the calculation of mode participation factors, i.e., WDIC of each mode. Case studies in a 6-mm aluminum plate were carried out to validate the WDIC of: (1) a through-thickness hole and (2) a sub-surface crack. At higher frequency, scattered waves of high-order modes will appear and their WDIC can be successfully extracted through the modal decomposition.

4.
Sensors (Basel) ; 19(7)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978968

RESUMO

This paper presents a new methodology for detecting and quantifying delamination in composite plates based on the high-frequency local vibration under the excitation of piezoelectric wafer active sensors. Finite-element-method-based numerical simulations and experimental measurements were performed to quantify the size, shape, and depth of the delaminations. Two composite plates with purpose-built delaminations of different sizes and depths were analyzed. In the experiments, ultrasonic C-scan was applied to visualize the simulated delaminations. In this methodology, piezoelectric wafer active sensors were used for the high-frequency excitation with a linear sine wave chirp from 1 to 500 kHz and a scanning laser Doppler vibrometer was used to measure the local vibration response of the composite plates. The local defect resonance frequencies of delaminations were determined from scanning laser Doppler vibrometer measurements and the corresponding operational vibration shapes were measured and utilized to quantify the delaminations. Harmonic analysis of local finite element model at the local defect resonance frequencies demonstrated that the strong vibrations only occurred in the delamination region. It is shown that the effect of delamination depth on the detectability of the delamination was more significant than the size of the delamination. The experimental and finite element modeling results demonstrate a good capability for the assessment of delamination with different sizes and depths in composite structures.

5.
Sensors (Basel) ; 19(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669307

RESUMO

In this paper, some recent piezoelectric wafer active sensors (PWAS) progress achieved in our laboratory for active materials and smart structures (LAMSS) at the University of South Carolina: http: //www.me.sc.edu/research/lamss/ group is presented. First, the characterization of the PWAS materials shows that no significant change in the microstructure after exposure to high temperature and nuclear radiation, and the PWAS transducer can be used in harsh environments for structural health monitoring (SHM) applications. Next, PWAS active sensing of various damage types in aluminum and composite structures are explored. PWAS transducers can successfully detect the simulated crack and corrosion damage in aluminum plates through the wavefield analysis, and the simulated delamination damage in composite plates through the damage imaging method. Finally, the novel use of PWAS transducers as acoustic emission (AE) sensors for in situ AE detection during fatigue crack growth is presented. The time of arrival of AE signals at multiple PWAS transducers confirms that the AE signals are originating from the crack, and that the amplitude decay due to geometric spreading is observed.


Assuntos
Técnicas Biossensoriais/instrumentação , Eletricidade , Saúde , Monitorização Fisiológica/instrumentação , Anisotropia , Fibra de Carbono/química , Análise de Fourier , Processamento de Sinais Assistido por Computador , Espectrometria por Raios X , Vibração
6.
Materials (Basel) ; 10(7)2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28773193

RESUMO

A key longstanding objective of the Structural Health Monitoring (SHM) research community is to enable the embedment of SHM systems in high value assets like aircraft to provide on-demand damage detection and evaluation. As against traditional non-destructive inspection hardware, embedded SHM systems must be compact, lightweight, low-power and sufficiently robust to survive exposure to severe in-flight operating conditions. Typical Commercial-Off-The-Shelf (COTS) systems can be bulky, costly and are often inflexible in their configuration and/or scalability, which militates against in-service deployment. Advances in electronics have resulted in ever smaller, cheaper and more reliable components that facilitate the development of compact and robust embedded SHM systems, including for Acousto-Ultrasonics (AU), a guided plate-wave inspection modality that has attracted strong interest due mainly to its capacity to furnish wide-area diagnostic coverage with a relatively low sensor density. This article provides a detailed description of the development, testing and demonstration of a new AU interrogation system called the Acousto Ultrasonic Structural health monitoring Array Module⁺ (AUSAM⁺). This system provides independent actuation and sensing on four Piezoelectric Wafer Active Sensor (PWAS) elements with further sensing on four Positive Intrinsic Negative (PIN) photodiodes for intensity-based interrogation of Fiber Bragg Gratings (FBG). The paper details the development of a novel piezoelectric excitation amplifier, which, in conjunction with flexible acquisition-system architecture, seamlessly provides electromechanical impedance spectroscopy for PWAS diagnostics over the full instrument bandwidth of 50 KHz-5 MHz. The AUSAM⁺ functionality is accessed via a simple hardware object providing a myriad of custom software interfaces that can be adapted to suit the specific requirements of each individual application.

7.
Sensors (Basel) ; 16(3): 291, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26927115

RESUMO

Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack propagation under changing structural boundary conditions can be monitored reliably. The method is not limited by the properties of the structure, and thus it is feasible to be applied to composite structure.

8.
Sensors (Basel) ; 13(10): 13356-81, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24084123

RESUMO

To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half.


Assuntos
Aeronaves/instrumentação , Algoritmos , Análise de Falha de Equipamento/instrumentação , Manufaturas/análise , Sistemas Microeletromecânicos/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Transdutores , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...