Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37988204

RESUMO

The canonical approach to video action recognition dictates a neural network model to do a classic and standard 1-of-N majority vote task. They are trained to predict a fixed set of predefined categories, limiting their transferability on new datasets with unseen concepts. In this article, we provide a new perspective on action recognition by attaching importance to the semantic information of label texts rather than simply mapping them into numbers. Specifically, we model this task as a video-text matching problem within a multimodal learning framework, which strengthens the video representation with more semantic language supervision and enables our model to do zero-shot action recognition without any further labeled data or parameters' requirements. Moreover, to handle the deficiency of label texts and make use of tremendous web data, we propose a new paradigm based on this multimodal learning framework for action recognition, which we dub "pre-train, adapt and fine-tune." This paradigm first learns powerful representations from pre-training on a large amount of web image-text or video-text data. Then, it makes the action recognition task to act more like pre-training problems via adaptation engineering. Finally, it is fine-tuned end-to-end on target datasets to obtain strong performance. We give an instantiation of the new paradigm, ActionCLIP, which not only has superior and flexible zero-shot/few-shot transfer ability but also reaches a top performance on general action recognition task, achieving 83.8% top-1 accuracy on Kinetics-400 with a ViT-B/16 as the backbone. Code is available at https://github.com/sallymmx/ActionCLIP.git.

2.
IEEE Trans Image Process ; 31: 6255-6266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36166565

RESUMO

This paper focuses on the mask utilization of video object segmentation (VOS). The mask here mains the reference masks in the memory bank, i.e., several chosen high-quality predicted masks, which are usually used with the reference frames together. The reference masks depict the edge and contour features of the target object and indicate the boundary of the target against the background, while the reference frames contain the raw RGB information of the whole image. It is obvious that the reference masks could play a significant role in the VOS, but this is not well explored yet. To tackle this, we propose to investigate the mask advantages of both the encoder and the matcher. For the encoder, we provide a unified codebase to integrate and compare eight different mask-fused encoders. Half of them are inherited or summarized from existing methods, and the other half are devised by ourselves. We find the best configuration from our design and give valuable observations from the comparison. Then, we propose a new mask-enhanced matcher to reduce the background distraction and enhance the locality of the matching process. Combining the mask-fused encoder, mask-enhanced matcher and a standard decoder, we formulate a new architecture named MaskVOS, which sufficiently exploits the mask benefits for VOS. Qualitative and quantitative results demonstrate the effectiveness of our method. We hope our exploration could raise the attention of mask utilization in VOS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...