Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 219: 106760, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35338889

RESUMO

BACKGROUND AND OBJECTIVE: Aortic pressure (Pa) is important for the diagnosis of cardiovascular disease. However, its direct measurement is invasive, not risk-free, and relatively costly. In this paper, a new simplified Kalman filter (SKF) algorithm is employed for the reconstruction of the Pa waveform using dual peripheral artery pressure waveforms. METHODS: Pa waveforms obtained in a previous study were collected from 25 patients. Simultaneously, radial and femoral pressure waveforms were generated from two simulation experiments, using transfer functions. In the first, the transfer function is a known finite impulse response; and in the second, it is derived from a tube-load model. To analyze the performance of the proposed SKF algorithm, variable amounts of noise were added to the observed output signal, to give a range of signal-to-noise ratios (SNRs). Additionally, central aortic, brachial and femoral pressure waveforms were simultaneously collected from 2 Sprague-Dawley rats and the measured and reconstructed Pa waveforms were compared. RESULTS: The proposed SKF algorithm outperforms canonical correlation analysis (CCA), which is the current state-of-the-art blind system identification method for the non-invasive estimation of central aortic blood pressure. It is also shown that the proposed SKF algorithm is more noise-tolerant than the CCA algorithm over a wide range of SNRs. CONCLUSION: The simulations and animal experiments illustrate that the proposed SKF algorithm is accurate and stable in the face of low SNRs. Improved methods for estimating central blood pressure as a measure of cardiac load adds to their value as a prognostic and diagnostic tool.


Assuntos
Pressão Arterial , Determinação da Pressão Arterial , Animais , Pressão Sanguínea/fisiologia , Determinação da Pressão Arterial/métodos , Humanos , Artéria Radial/fisiologia , Ratos , Ratos Sprague-Dawley
2.
Comput Biol Med ; 135: 104545, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34144269

RESUMO

BACKGROUND: Central aortic pressure (CAP) as the major load on the left heart is of great importance in the diagnosis of cardiovascular disease. Studies have pointed out that CAP has a higher predictive value for cardiovascular disease than peripheral artery pressure (PAP) measured by means of traditional sphygmomanometry. However, direct measurement of the CAP waveform is invasive and expensive, so there remains a need for a reliable and well validated non-invasive approach. METHODS: In this study, a multi-channel Newton (MCN) blind system identification algorithm was employed to noninvasively reconstruct the CAP waveform from two PAP waveforms. In simulation experiments, CAP waveforms were recorded in a previous study, on 25 patients and the PAP waveforms (radial and femoral artery pressure) were generated by FIR models. To analyse the noise-tolerance of the MCN method, variable amounts of noise were added to the peripheral signals, to give a range of signal-to-noise ratios. In animal experiments, central aortic, brachial and femoral pressure waveforms were simultaneously recorded from 2 Sprague-Dawley rats. The performance of the proposed MCN algorithm was compared with the previously reported cross-relation and canonical correlation analysis methods. RESULTS: The results showed that the root mean square error of the measured and reconstructed CAP waveforms and less noise-sensitive using the MCN algorithm was smaller than those of the cross-relation and canonical correlation analysis approaches. CONCLUSION: The MCN method can be exploited to reconstruct the CAP waveform. Reliable estimation of the CAP waveform from non-invasive measurements may aid in early diagnosis of cardiovascular disease.


Assuntos
Pressão Arterial , Determinação da Pressão Arterial , Algoritmos , Animais , Pressão Sanguínea , Humanos , Modelos Cardiovasculares , Artéria Radial , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...