Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 300: 105179, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657733

RESUMO

This study aims to investigate the potential regulatory network responsible for the meat quality using multi-omics to help developing better varieties. Slaughter performance and meat quality of Shuxing No.1 rabbit outperformed IRA rabbit according to the tested rabbit parameters. Differentially expressed genes (DEGs) and differentially abundance proteins (DAPs) were involved in meat quality-related pathways, such as PI3K - Akt and MAPK signaling pathways. Only SMTNL1 and PM20D2 shared between DEGs and DAPs. Olfactory-sensitive undecanal, a differentially abundant metabolite (DAM) in volatilomics (vDAMs), correlated with all of the remaining 11 vDAMs, and most of 12 vDAMs were associated with amino acid metabolism. Integration revealed that 829 DEGs/DAPs were associated with 15 DAMs in four KEGG pathways, such as melatonin (a DAM in widely targeted metabolomics) was significantly positively correlated with ALDH and negatively correlated with RAB3D and CAT in the tryptophan metabolism pathway. This study sheds light on the potential mechanisms that contribute to the improved meat quality and flavor. SIGNIFICANCE: Shuxing No.1 rabbit is a new breed of meat rabbit in the Chinese market. In meat marketing, meat quality usually determines the purchase intention of consumers. Determining the biological and molecular mechanisms of meat quality in meat rabbit is essential for developing strategies to improve meat quality. According to the tested rabbit parameters, this study ascertained that the slaughter performance and meat quality of Shuxing No.1 rabbit surpasses that of IRA rabbit. The present study profiled the transcriptome, proteome, widely targeted metabolome, and volatilome of longissimus dorsi from Shuxing No.1 rabbit and IRA rabbit. The study found that meat quality and flavor-related tryptophan metabolism pathway is enriched with many DEGs/DAPs (including ALDH, RAB3D, and CAT), as well as a DAM, melatonin. This study sheds light on the potential mechanisms that contribute to the improved meat quality and flavor.


Assuntos
Carne , Proteômica , Transcriptoma , Animais , Coelhos , Proteômica/métodos , Carne/análise , Metabolômica , Redes Reguladoras de Genes , Proteoma/metabolismo , Proteoma/análise , Músculo Esquelético/metabolismo
2.
Animals (Basel) ; 12(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36009642

RESUMO

The domestic rabbit (Oryctolagus cuniculus f. domesticus) is a very important variety in biomedical research and agricultural animal breeding. Due to the different geographical areas in which rabbit breeds originated, and the long history of domestication/artificial breeding, rabbits have experienced strong selection pressure, which has shaped many traits of most rabbit varieties, such as color and weight. An efficient genome-wide single-nucleotide polymorphism (SNP) detection strategy is genotyping-by-sequencing (GBS), which has been widely used in many organisms. This study attempted to explore bi-allelic SNPs associated with fur color and weight-related traits using GBS in five rabbit breeds. The data consisted of a total 831,035 SNPs in 150 individuals from Californian rabbits (CF), German Zika rabbits (ZK), Qixing rabbits (QX), Sichuan grey rabbits (SG), and Sichuan white rabbits (SW). In addition, these five breeds of rabbits were obviously independent populations, with high genetic differentiation among breeds and low genetic diversity within breeds. A total of 32,144 SNP sites were identified by selective sweep among the different varieties. The genes that carried SNP loci in these selected regions were related to important traits (fur color and weight) and signal pathways, such as the MAPK/ERK signaling pathway and the Hippo signaling pathway. In addition, genes related to fur color and weight were identified, such as ASIPs, MITFs and KITs, ADCY3s, YAPs, FASs, and ACSL5s, and they had more SNP sites. The research offers the foundation for further exploration of molecular genetic markers of SNPs that are related to traits.

3.
Front Vet Sci ; 9: 838802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372533

RESUMO

Background: The chorion from the placenta is directly attached to the endometrium (CA) after embryo implantation while some parts of the endometrium are not chorion-attached (NCA). The differences in gene expression between the CA and NCA endometrium mid-gestation are unknown. Our objective was to compare the gene expression profiles of the CA and NCA endometrium of rabbit, to identify the differentially expressed genes (DEGs), and correlate the differences with the physiological state of the endometrium at mid-gestation of rabbit. Methods: We used transcriptome sequencing to reveal the differences in gene expression between CA and NCA endometrium (n = 3), and then determined the concentration of inflammatory cytokines in CA and NCA tissue and serum by ELISA. Results: Six Hundred and Forty-Six DEGs were identified between the CA and NCA endometrium [p < 0.05, |log2 (fold change) |≥ 2], The expression levels of 590 DEGs were higher in the NCA endometrium than in the CA endometrium, while the expression level of only 56 DEGs were higher in CA than in NCA. The DEGs were enriched in gene ontology (GO) terms and pathways related to immune regulation and cellular adhesions. Six hub-genes related to inflammatory mediator regulation of transient receptor potential (TRP) channels and chemokine signaling pathways had a lower expression level in the CA endometrium compared to the NCA endometrium, and the expression levels of genes related to focal adhesion and extracellular matrix (ECM)-receptors were significantly higher in NCA endometrium than in CA endometrium. The level of pro-inflammatory cytokines accumulated in the CA endometrium, and high abundance of integrin-ß and THBS1 were localized in the luminal epithelium of the NCA endometrium, but not in the CA endometrium. Conclusions: Our study reveals differences in gene expression between the CA and NCA endometrium at mid-gestation of rabbit, and suggests implications for endometrial physiological function. The CA endometrium showed relative low-level gene expression compared to the NCA endometrium, while the NCA endometrium performed physiological functions related to focal adhesion and ECM-receptor interaction.

4.
Genomics ; 112(3): 2203-2212, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31881265

RESUMO

The roles of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in embryonic development remain unclear. We performed a comprehensive analysis of lncRNA and circRNA profiles in rabbit embryos at different stages by whole transcriptome sequencing. We identified 719 lncRNAs and 744 circRNAs that were differentially expressed between stages S1, S2 and S3. A total of 241 differentially expressed lncRNAs and 166 differentially expressed circRNAs were significantly involved in embryonic morphogenesis and development. An RNA network was established and of the embryonic development-associated RNAs, the lncRNAs TCONS_00009253 and TCONS_00010436 were persistently downregulated, while circRNA_07129, circRNA_15209, and circRNA_12526 were persistently upregulated, and their co-expressed mRNAs TBX1, WNT3 and FGFR2 were persistently downregulated during embryonic development. These candidate RNAs were mainly involved in the Wnt, PI3K-Akt, and calcium signaling pathways. This study reports candidate lncRNAs and circRNAs that may be indispensable for the morphogenesis and development of rabbit embryos.


Assuntos
Desenvolvimento Embrionário/genética , RNA Circular/metabolismo , RNA Longo não Codificante/metabolismo , Coelhos/embriologia , Coelhos/genética , Animais , Embrião de Mamíferos/metabolismo , Redes Reguladoras de Genes , Morfogênese , RNA Mensageiro/metabolismo , RNA-Seq , Coelhos/metabolismo , Sequenciamento do Exoma
5.
Int J Mol Sci ; 19(7)2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30011879

RESUMO

Skeletal muscle development plays an important role in muscle quality and yield, which decides the economic value of livestock. Long non-coding RNAs (lncRNAs) have been reported to be associated with skeletal muscle development. However, little is revealed about the function of lncRNAs in rabbits' muscle development. LncRNAs and mRNAs in two rabbit breeds (ZIKA rabbits (ZKR) and Qixin rabbits (QXR)) with different growth rates at three developmental stages (0 day, 35 days, and 84 days after birth) were researched by transcriptome sequencing. Differentially expressed lncRNAs and mRNAs were identified for two rabbit breeds at the same stages by DESeq package. Co-expression correlation analysis of differentially expressed lncRNAs and mRNAs were performed to construct lncRNA⁻mRNA pairs. To explore the function of lncRNAs, Gene Ontology (GO) analysis of co-expression mRNAs in lncRNA⁻mRNA pairs were performed. In three comparisons, there were 128, 109, and 115 differentially expressed lncRNAs, respectively. LncRNAs TCONS_00013557 and XR_518424.2 differentially expressed in the two rabbit breeds might play important roles in skeletal muscle development, for their co-expressed mRNAs were significantly enriched in skeletal muscle development related GO terms. This study provides potentially functional lncRNAs in skeletal muscle development of two rabbit breeds and might be beneficial to the production of rabbits.


Assuntos
Perfilação da Expressão Gênica , Desenvolvimento Muscular/genética , RNA Longo não Codificante/genética , Coelhos/genética , Animais , Cruzamento , Ontologia Genética , Redes Reguladoras de Genes , Análise de Componente Principal , RNA Mensageiro/genética , Coelhos/classificação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...