Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-252973

RESUMO

Severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2), the etiologic agent of the coronavirus disease 2019 (COVID-19), has a catastrophic effect on human health and society. Clinical findings indicated that the suppression of innate antiviral immunity, especially the type I and III interferon (IFN) production, contributes to the pathogenesis of COVID-19. However, how SARS-CoV-2 evades antiviral immunity still needs further investigations. Here, we reported that the open reading frame 9b (ORF9b) protein encoded by the SARS-CoV-2 genome inhibits the activation of type I and III IFN response by targeting multiple molecules of innate antiviral signaling pathways. SARS-CoV-2 ORF9b impaired the induction of type I and III IFNs by Sendai virus or the dsRNA mimic poly (I:C). SARS-CoV-2 ORF9b inhibits the activation of type I and III IFNs induced by the components of cytosolic dsRNA-sensing pathways of RIG-I/MDA5-MAVS signaling, including RIG-I, MDA-5, MAVS, TBK1, and IKK{varepsilon} rather than IRF3-5D, the active form of IRF3. SARS-CoV-2 ORF9b also suppressed the induction of type I and III IFNs by TRIF and STING, the adaptor protein of endosome RNA-sensing pathway of TLR3-TRIF signaling and the adaptor protein of cytosolic DNA-sensing pathway of cGAS-STING signaling, respectively. Mechanistically, SARS-CoV-2 ORF9b protein interacts with RIG-I, MDA-5, MAVS, TRIF, STING, TBK1, and prevents TBK1 phosphorylation, thus impeding the phosphorylation and nuclear trans-localization of IRF3 activation. Overexpression of SARS-CoV-2 ORF9b facilitates the replication of the vesicular stomatitis virus. Therefore, SARS-CoV-2 ORF9b negatively regulates antiviral immunity, thus, facilitate virus replication. This study contributes to our understanding of the molecular mechanism of how SARS-CoV-2 impaired antiviral immunity and providing an essential clue to the pathogenesis of COVID-19.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-222026

RESUMO

The coronavirus disease 2019 (COVID-19) caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread worldwide and has infected more than ten million individuals. One of the typical features of COVID-19 is that both type I and III interferon (IFN)-mediated antiviral immunity are suppressed. However, the molecular mechanism by which SARS-CoV-2 evades this antiviral immunity remains elusive. Here, we report that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway of RIG-I/MDA-5-MAVS signaling. The SARS-CoV2 M protein also dampens type I and III IFN induction stimulated by Sendai virus infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1 and prevents the formation of a multi-protein complex containing RIG-I, MAVS, TRAF3, and TBK1, thus impeding IRF3 phosphorylation, nuclear translocation, and activation. Consequently, the ectopic expression of the SARS-CoV2 M protein facilitates the replication of vesicular stomatitis virus (VSV). Taken together, the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of the SARS-CoV-2-induced antiviral immune suppression and sheds light on the pathogenic mechanism of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...