Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(10): 113180, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37794597

RESUMO

Cognate interaction between CD4+ effector memory T (TEM) cells and dendritic cells (DCs) induces innate inflammatory cytokine production, resulting in detrimental autoimmune pathology and cytokine storms. While TEM cells use tumor necrosis factor (TNF) superfamily ligands to activate DCs, whether TEM cells prompt other DC-intrinsic changes that influence the innate inflammatory response has never been investigated. We report the surprising discovery that TEM cells trigger double-strand DNA breaks via mitochondrial reactive oxygen species (ROS) production in interacting DCs. Initiation of the DNA damage response in DCs induces activation of a cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-independent, non-canonical stimulator of interferon genes (STING)-TNF receptor-associated factor 6 (TRAF6)-nuclear factor κB (NF-κB) signaling axis. Consequently, STING-deficient DCs display reduced NF-κB activation and subsequent defects in transcriptional induction and functional production of interleukin-1ß (IL-1ß) and IL-6 following their interaction with TEM cells. The discovery of TEM cell-induced innate inflammation through DNA damage and a non-canonical STING-NF-κB pathway presents this pathway as a potential target to alleviate T cell-driven inflammation in autoimmunity and cytokine storms.


Assuntos
Células Dendríticas , Inflamação , Células T de Memória , Humanos , Síndrome da Liberação de Citocina , Células Dendríticas/metabolismo , Dano ao DNA , Inflamação/patologia , Células T de Memória/metabolismo , NF-kappa B/metabolismo , Nucleotidiltransferases/metabolismo
2.
J Exp Med ; 220(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36976181

RESUMO

Intestinal epithelial cells (IECs) constitute a critical first line of defense against microbes. While IECs are known to respond to various microbial signals, the precise upstream cues regulating diverse IEC responses are not clear. Here, we discover a dual role for IEC-intrinsic interleukin-1 receptor (IL-1R) signaling in regulating intestinal homeostasis and inflammation. Absence of IL-1R in epithelial cells abrogates a homeostatic antimicrobial program including production of antimicrobial peptides (AMPs). Mice deficient for IEC-intrinsic IL-1R are unable to clear Citrobacter rodentium (C. rodentium) but are protected from DSS-induced colitis. Mechanistically, IL-1R signaling enhances IL-22R-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in IECs leading to elevated production of AMPs. IL-1R signaling in IECs also directly induces expression of chemokines as well as genes involved in the production of reactive oxygen species. Our findings establish a protective role for IEC-intrinsic IL-1R signaling in combating infections but a detrimental role during colitis induced by epithelial damage.


Assuntos
Colite , Receptores de Interleucina-1 , Camundongos , Animais , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo , Intestinos , Colite/metabolismo , Inflamação/metabolismo , Células Epiteliais/metabolismo , Homeostase , Mucosa Intestinal/metabolismo
3.
Sci Immunol ; 7(67): eabk0182, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061504

RESUMO

Cytokine storm and sterile inflammation are common features of T cell-mediated autoimmune diseases and T cell-targeted cancer immunotherapies. Although blocking individual cytokines can mitigate some pathology, the upstream mechanisms governing overabundant innate inflammatory cytokine production remain unknown. Here, we have identified a critical signaling node that is engaged by effector memory T cells (TEM) to mobilize a broad proinflammatory program in the innate immune system. Cognate interactions between TEM and myeloid cells led to induction of an inflammatory transcriptional profile that was reminiscent, yet entirely independent, of classical pattern recognition receptor (PRR) activation. This PRR-independent "de novo" inflammation was driven by preexisting TEM engagement of both CD40 and tumor necrosis factor receptor (TNFR) on myeloid cells. Cytokine toxicity and autoimmune pathology could be completely rescued by ablating these pathways genetically or pharmacologically in multiple models of T cell-driven inflammation, indicating that TEM instruction of the innate immune system is a primary driver of associated immunopathology. Thus, we have identified a previously unknown trigger of cytokine storm and autoimmune pathology that is amenable to therapeutic interventions.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/imunologia , Inflamação/imunologia , Células Mieloides/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Animais , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes
4.
Curr Opin Immunol ; 73: 25-33, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34425435

RESUMO

The ability of the innate and adaptive immune systems to communicate with each other is central to protective immune responses and maintenance of host health. Myeloid cells of the innate immune system are able to sense microbial ligands, perturbations in cellular homeostasis, and virulence factors, thereby allowing them to relay distinct pathogen-specific information to naïve T cells in the form of pathogen-derived peptides and a unique cytokine milieu. Once primed, effector T helper cells produce lineage-defining cytokines to help combat the original pathogen, and a subset of these cells persist as memory or effector-memory populations. These memory T cells then play a dual role in host protection by not only responding rapidly to reinfection, but by also directly instructing myeloid cells to express licensing cytokines. This means there is a bi-directional flow of information first from the innate to the adaptive immune system, and then from the adaptive back to innate immune system. Here, we focus on how signals, first from pathogens and then from primed effector and memory T cells, are integrated by myeloid cells and its consequences for protective immunity or systemic inflammation.


Assuntos
Inflamação/imunologia , Células T de Memória/imunologia , Células Mieloides/imunologia , Imunidade Adaptativa , Animais , Citocinas/metabolismo , Humanos , Imunidade Inata , Memória Imunológica , Transdução de Sinais
5.
J AOAC Int ; 102(2): 508-524, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30205867

RESUMO

VereBeef™ Detection Kit, incorporating both multiplex PCR and microarray technologies on a lab-on-chip platform, is intended for qualitative detection and differentiation of Escherichia coli O157:H7, E. coli O26, E. coli O45, E. coli O103, E. coli O111, E. coli O121, E. coli O145, Shiga toxin-producing E. coli (STEC) virulence factors (stx1A, stx2A, eae), and Salmonella species in one test using raw beef trim samples. This product underwent extensive evaluations, including inclusivity-exclusivity, method comparison, robustness, lot-to-lot variability, and stability studies. The inclusivity/exclusivity study demonstrated that VereBeef Detection Kit specifically detects and identifies target analytes without occurrence of false-positive and false-negative detection. In the method comparison study, the performance of the VereBeef Detection Kit was compared with U.S. Department of Agriculture Food Safety and Inspection Service Microbiology Laboratory Guidebook's methods for target organism detection in raw beef trim using E. coli O157:H7 single inoculation and Salmonella and non-O157 STEC dual inoculation. Data demonstrated equivalence in both methods. The robustness study showed that changes in the test parameters do not impact assay performance. Collectively, VereBeef Detection Kit is able to detect target pathogens in raw beef trim with a minimum enrichment time of 8 h for E. coli O157:H7 detection and 10 h for Salmonella and non-O157 STEC detection.


Assuntos
Microbiologia de Alimentos , Carne/microbiologia , Técnicas Analíticas Microfluídicas/normas , Reação em Cadeia da Polimerase Multiplex/normas , Animais , Bovinos , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Salmonella/classificação , Salmonella/isolamento & purificação
6.
J AOAC Int ; 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30060779

RESUMO

Background: The Thermo Scientific RapidFinder™ Salmonella species, Typhimurium and Enteritidis Multiplex PCR Kit is a real-time multiplex PCR assay for the detection and differentiation of Salmonella species, Salmonella Typhimurium, and S. Enteritidis from poultry, pork, and environmental samples. The method has previously been granted certification as Performance Tested Method SM (PTM) 081701, validated according to the AOAC Research Institute (RI) PTM program for poultry (chicken thighs with skin, chicken wings with skin, and chicken nuggets), raw pork sausage matrixes, and stainless steel environmental surface sponges. Objective: This report details the method modification study to validate ground turkey (375 g sample size), chicken carcass rinse, and shell egg matrixes. Methods: The candidate method was compared with the U.S. Food and Drug Administration's Bacteriological Analytical Manual Chapter 5 for shell eggs and the U.S. Department of Agriculture Food Safety and Inspection Service's Microbiology Laboratory Guidebook 4.09 for ground turkey (375 g) and chicken carcass rinse matrixes. Results: The statistically significant differences found between the candidate and reference methods upon analysis by probability of detection were in favor of the candidate method. Inclusivity and exclusivity testing demonstrated that the RapidFinder Salmonella species, Typhimurium and Enteritidis Multiplex PCR Kit was able to detect all the major groups of Salmonella. All exclusivity isolates were correctly excluded. Conclusions: The data presented in this report show that the candidate is suitable for the detection and differentiation of Salmonellae from shell egg, chicken carcass rinse, and ground turkey (375 g) matrixes. Highlights: Thermo Scientific RapidFinder Salmonella species, Typhimurium and Enteritidis Multiplex PCR Kit (candidate method) matrix claims extended to include ground turkey (375 g), chicken carcass rinse and shell egg samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...