Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Heart J Digit Health ; 4(5): 420-427, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37794872

RESUMO

Aims: It has been demonstrated that several cardiac pathologies, including myocardial ischaemia, can be detected using smartwatch electrocardiograms (ECGs). Correct placement of bipolar chest leads remains a major challenge in the outpatient population. Methods and results: In this feasibility trial, we propose an augmented reality-based smartphone app that guides the user to place the smartwatch in predefined positions on the chest using the front camera of a smartphone. A machine-learning model using MobileNet_v2 as the backbone was trained to detect the bipolar lead positions V1-V6 and visually project them onto the user's chest. Following the smartwatch recordings, a conventional 10 s, 12-lead ECG was recorded for comparison purposes. All 50 patients participating in the study were able to conduct a 9-lead smartwatch ECG using the app and assistance from the study team. Twelve patients were able to record all the limb and chest leads using the app without additional support. Bipolar chest leads recorded with smartwatch ECGs were assigned to standard unipolar Wilson leads by blinded cardiologists based on visual characteristics. In every lead, at least 86% of the ECGs were assigned correctly, indicating the remarkable similarity of the smartwatch to standard ECG recordings. Conclusion: We have introduced an augmented reality-based method to independently record multichannel smartwatch ECGs in an outpatient setting.

2.
Neuroimage ; 245: 118701, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34758383

RESUMO

Animal research has repeatedly shown that control is a key variable in the brain's stress response. Uncontrollable stress triggers a release of monoamines, impairing prefrontal functions while enhancing subcortical circuits. Conversely, control over an adverse event involves prefrontally mediated downregulation of monoamine nuclei and is considered protective. However, it remains unclear to what extent these findings translate to humans. During functional magnetic resonance imaging, we subjected participants to controllable and uncontrollable aversive but non-painful electric stimuli, as well as to a control condition without aversive stimulation. In each trial, a symbol signalled whether participants could terminate the stressor through correct performance in a button-matching task or whether the stressor would be randomly terminated, i.e., uncontrollable. Along with neural responses, we assessed participants' accuracy, reaction times, and heart rate. To relate neural activations and subjective experience, we asked participants to rate perceived control, helplessness, and stress. Results were largely in line with our hypotheses. The vmPFC was generally deactivated by aversive stimulation, but this effect was attenuated when participants could terminate the stressor compared to when their responses had no effect. Furthermore, activation in stress-responsive regions, including the bilateral insula, was reduced during controllable trials. Under uncontrollable aversive stimulation, greater vmPFC recruitment was linked to reduced feelings of helplessness. An investigation of condition-dependant differences in vmPFC connectivity yielded no significant results. Our findings further corroborate animal research and emphasise the role of the vmPFC in controllability-dependant regulation of stress responses. Based on the results, we discuss future directions in the context of resilience research and mental health promotion.


Assuntos
Desamparo Aprendido , Imageamento por Ressonância Magnética , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/fisiopatologia , Adulto , Estimulação Elétrica , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...