Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 204: 117645, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34547688

RESUMO

Persistent and mobile chemicals (PM chemicals) were searched for in surface waters by hydrophilic interaction liquid chromatography (HILIC) and supercritical fluid chromatography (SFC), both coupled to high resolution mass spectrometry (HRMS). A suspect screening was performed using a newly compiled list of 1310 potential PM chemicals to the data of 11 surface water samples from two river systems. In total, 64 compounds were identified by this approach. The overlap between HILIC- and SFC-HRMS was limited (31 compounds), confirming the complementarity of the two methods used. The identified PM candidates are characterized by a high polarity (median logD -0.4 at pH 7.5), a low molecular weight (median 187 g/mol), are mostly ionic (54 compounds) and contain a large number of heteroatoms (one per four carbons on average). Among the most frequently detected novel or yet scarcely investigated water contaminants were cyanoguanidine (11/11 samples), adamantan-1-amine (10/11), trifluoromethanesulfonate (9/11), 2-acrylamido-2-methylpropanesulfonate (10/11), and the inorganic anions hexafluorophosphate (11/11) and tetrafluoroborate (10/11). 31% of the identified suspects are mainly used in ionic liquids, a chemically diverse group of industrial chemicals with numerous applications that is so far rarely studied for their occurrence in the environment. Prioritization of the findings of PM candidates is hampered by the apparent lack of toxicity data. Hence, precautionary principles and minimization approaches should be applied for the risk assessment and risk management of these substances. The large share of novel water contaminants among these findings of the suspect screening indicates that the universe of PM chemicals present in the environment has so far only scarcely been explored. Dedicated analytical methods and screening lists appear essential to close the analytical gap for PM compounds.


Assuntos
Cromatografia com Fluido Supercrítico , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Rios
2.
Anal Bioanal Chem ; 412(20): 4941-4952, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32524369

RESUMO

Persistent and mobile organic substances (PM substances) are a threat to the quality of our water resources. While screening studies revealed widespread occurrence of many PM substances, rapid trace analytical methods for their quantification in large sample sets are missing. We developed a quick and generic analytical method for highly mobile analytes in surface water, groundwater, and drinking water samples based on enrichment through azeotrope evaporation (4 mL water and 21 mL acetonitrile), supercritical fluid chromatography (SFC) coupled to high-resolution mass spectrometry (HRMS), and quantification using a compound-specific correction factor for apparent recovery. The method was validated using 17 PM substances. Sample preparation recoveries were between 60 and 110% for the vast majority of PM substances. Strong matrix effects (most commonly suppressive) were observed, necessitating a correction for apparent recoveries in quantification. Apparent recoveries were neither concentration dependent nor dependent on the water matrix (surface or drinking water). Method detection and quantification limits were in the single- to double-digit ng L-1 ranges, precision expressed as relative standard deviation of quadruplicate quantifications was on average < 10%, and trueness experiments showed quantitative results within ± 30% of the theoretical value in 77% of quantifications. Application of the method to surface water, groundwater, raw water, and finished drinking water revealed the presence of acesulfame and trifluoromethanesulfonic acid up to 70 and 19 µg L-1, respectively. Melamine, diphenylguanidine, p-dimethylbenzenesulfonic acid, and 4-hydroxy-1-(2-hydroxyethyl)-2,2,6,6-tetramethylpiperidine were found in high ng L-1 concentrations. Graphical abstract.

3.
Environ Sci Technol ; 51(10): 5523-5530, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28474521

RESUMO

More than 400 new nitrogen containing products were detected upon experimental sunlight photolysis of the pharmaceutical carbamazepine (CBZ) in the presence of dissolved organic matter (DOM) by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). These products were presumably formed through covalent binding of CBZ phototransformation products with DOM molecules. About 50% of these newly formed bound residues contained one nitrogen atom and had a molecular mass between 375 and 525 Da, which was 150 to 200 Da higher than for an average DOM molecule. In addition, a previously unknown CBZ phototransformation product, 3-quinolinecarboxylic acid (3-QCA), was identified by liquid chromatography high resolution tandem mass spectrometry (LC-HRMS/MS). 3-QCA was likely formed through oxidative ring cleavage and subsequent decarboxylation of acridine, a well-known phototransformation product of CBZ. Collision induced dissociation experiments and Kendrick mass defect analyses corroborated that about 160 of the new products were formed via covalent binding of 3-QCA with DOM molecules of above-average O/C and H/C ratios. Experiments at lower CBZ concentration suggested that the importance of bound residue formation increases with increasing DOM/CBZ ratios. Photochemically induced bound residue formation of polar contaminants with DOM in the aqueous phase is thus a disregarded pathway along which contaminants can be transformed in the environment. The method presented here offers a new possibility to study the formation of bound residues, which may be of relevance also for other transformation processes in natural waters where radical intermediates are generated.


Assuntos
Carbamazepina/química , Poluentes Químicos da Água/química , Cromatografia Líquida , Espectrometria de Massas , Compostos Orgânicos , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...