Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chembiochem ; 24(3): e202200463, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420784

RESUMO

The highly glycosylated spike protein of SARS-CoV-2 is essential for infection and constitutes a prime target for antiviral agents and vaccines. The pineapple-derived jacalin-related lectin AcmJRL is present in the medication bromelain in significant quantities and has previously been described to bind mannosides. Here, we performed a large ligand screening of AcmJRL by glycan array analysis, quantified the interaction with carbohydrates and validated high-mannose glycans as preferred ligands. Because the SARS-CoV-2 spike protein was previously reported to carry a high proportion of high-mannose N-glycans, we tested the binding of AcmJRL to the recombinantly produced extraviral domain of spike protein. We could demonstrate that AcmJRL binds the spike protein with a low-micromolar KD in a carbohydrate-dependent fashion.


Assuntos
Ananas , Lectinas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Ananas/química , Carboidratos , Lectinas/química , Manose/química , Polissacarídeos/química , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química
2.
Angew Chem Int Ed Engl ; 62(7): e202215535, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36398566

RESUMO

Bacterial adhesion, biofilm formation and host cell invasion of the ESKAPE pathogen Pseudomonas aeruginosa require the tetravalent lectins LecA and LecB, which are therefore drug targets to fight these infections. Recently, we have reported highly potent divalent galactosides as specific LecA inhibitors. However, they suffered from very low solubility and an intrinsic chemical instability due to two acylhydrazone motifs, which precluded further biological evaluation. Here, we isosterically substituted the acylhydrazones and systematically varied linker identity and length between the two galactosides necessary for LecA binding. The optimized divalent LecA ligands showed improved stability and were up to 1000-fold more soluble. Importantly, these properties now enabled their biological characterization. The lead compound L2 potently inhibited LecA binding to lung epithelial cells, restored wound closure in a scratch assay and reduced the invasiveness of P. aeruginosa into host cells.


Assuntos
Adesinas Bacterianas , Pseudomonas aeruginosa , Humanos , Adesinas Bacterianas/química , Pseudomonas aeruginosa/metabolismo , Fatores de Virulência/metabolismo , Galactosídeos/química , Galactosídeos/metabolismo , Galactosídeos/farmacologia , Aderência Bacteriana
3.
J Med Chem ; 65(20): 13988-14014, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36201248

RESUMO

Chronic Pseudomonas aeruginosa infections are characterized by biofilm formation, a major virulence factor of P. aeruginosa and cause of extensive drug resistance. Fluoroquinolones are effective antibiotics but are linked to severe side effects. The two extracellular P. aeruginosa-specific lectins LecA and LecB are key structural biofilm components and can be exploited for targeted drug delivery. In this work, several fluoroquinolones were conjugated to lectin probes by cleavable peptide linkers to yield lectin-targeted prodrugs. Mechanistically, these conjugates therefore remain non-toxic in the systemic distribution and will be activated to kill only once they have accumulated at the infection site. The synthesized prodrugs proved stable in the presence of host blood plasma and liver metabolism but rapidly released the antibiotic cargo in the presence of P. aeruginosa in a self-destructive manner in vitro. Furthermore, the prodrugs showed good absorption, distribution, metabolism, and elimination (ADME) properties and reduced toxicity in vitro, thus establishing the first lectin-targeted antibiotic prodrugs against P. aeruginosa.


Assuntos
Pró-Fármacos , Infecções por Pseudomonas , Humanos , Pseudomonas aeruginosa , Lectinas/farmacologia , Lectinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/metabolismo , Biofilmes , Infecções por Pseudomonas/tratamento farmacológico , Fatores de Virulência/metabolismo , Fluoroquinolonas/farmacologia
4.
J Med Chem ; 65(20): 14180-14200, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36256875

RESUMO

The Gram-negative pathogen Pseudomonas aeruginosa causes severe infections mainly in immunocompromised or cystic fibrosis patients and is able to resist antimicrobial treatments. The extracellular lectin LecB plays a key role in bacterial adhesion to the host and biofilm formation. For the inhibition of LecB, we designed and synthesized a set of fucosyl amides, sulfonamides, and thiourea derivatives. Then, we analyzed their binding to LecB in competitive and direct binding assays. We identified ß-fucosyl amides as unprecedented high-affinity ligands in the two-digit nanomolar range. X-ray crystallography of one α- and one ß-anomer of N-fucosyl amides in complex with LecB revealed the interactions responsible for the high affinity of the ß-anomer at atomic level. Further, the molecules showed good stability in murine and human blood plasma and hepatic metabolism, providing a basis for future development into antibacterial drugs.


Assuntos
Lectinas , Pseudomonas aeruginosa , Humanos , Camundongos , Animais , Pseudomonas aeruginosa/metabolismo , Lectinas/metabolismo , Ligantes , Amidas/farmacologia , Amidas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Sulfonamidas/metabolismo , Tioureia/metabolismo , Biofilmes
5.
J Med Chem ; 63(20): 11707-11724, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32924479

RESUMO

Chronic infections by Pseudomonas aeruginosa are characterized by biofilm formation, which effectively enhances resistance toward antibiotics. Biofilm-specific antibiotic delivery could locally increase drug concentration to break antimicrobial resistance and reduce the drug's peripheral side effects. Two extracellular P. aeruginosa lectins, LecA and LecB, are essential structural components for biofilm formation and thus render a possible anchor for biofilm-targeted drug delivery. The standard-of-care drug ciprofloxacin suffers from severe systemic side effects and was therefore chosen for this approach. We synthesized several ciprofloxacin-carbohydrate conjugates and established a structure-activity relationship. Conjugation of ciprofloxacin to lectin probes enabled biofilm accumulation in vitro, reduced the antibiotic's cytotoxicity, but also reduced its antibiotic activity against planktonic cells due to a reduced cell permeability and on target activity. This work defines the starting point for new biofilm/lectin-targeted drugs to modulate antibiotic properties and ultimately break antimicrobial resistance.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Carboidratos/farmacologia , Ciprofloxacina/farmacologia , Lectinas/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/química , Carboidratos/química , Linhagem Celular Tumoral , Ciprofloxacina/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Lectinas/metabolismo , Estrutura Molecular , Pseudomonas aeruginosa/metabolismo , Relação Estrutura-Atividade
6.
Curr Opin Chem Biol ; 53: 51-67, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31470348

RESUMO

Lectins are proteins found in all domains of life with a plethora of biological functions, especially in the infection process, immune response, and inflammation. Targeting these carbohydrate-binding proteins is challenged by the fact that usually low affinity interactions between lectin and glycoconjugate are observed. Nature often circumvents this process through multivalent display of ligand and lectin. Consequently, the vast majority of synthetic antagonists are multivalently displayed native carbohydrates. At the cost of disadvantageous pharmacokinetic properties and possibly a reduced selectivity for the target lectin, the molecules usually possess very high affinities to the respective lectin through ligand epitope avidity. Recent developments include the advent of glycomimetic or allosteric small molecule inhibitors for this important protein class and their use in chemical biology and drug research. This evolution has culminated in the transition of the small molecule GMI-1070 into clinical phase III. In this opinion article, an overview of the most important developments of lectin antagonists in the last two decades with a focus on the last five years is given.


Assuntos
Descoberta de Drogas , Imunidade , Infecções/metabolismo , Lectinas/antagonistas & inibidores , Animais , Humanos , Imunidade/efeitos dos fármacos , Infecções/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...