Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
1.
medRxiv ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39072045

RESUMO

Discerning the mechanisms driving type 2 diabetes (T2D) pathophysiology from genome-wide association studies (GWAS) remains a challenge. To this end, we integrated omics information from 16 multi-tissue and multi-ancestry expression, protein, and metabolite quantitative trait loci (QTL) studies and 46 multi-ancestry GWAS for T2D-related traits with the largest, most ancestrally diverse T2D GWAS to date. Of the 1,289 T2D GWAS index variants, 716 (56%) demonstrated strong evidence of colocalization with a molecular or T2D-related trait, implicating 657 cis -effector genes, 1,691 distal-effector genes, 731 metabolites, and 43 T2D-related traits. We identified 773 of these cis- and distal-effector genes using either expression QTL data from understudied ancestry groups or inclusion of T2D index variants enriched in underrepresented populations, emphasizing the value of increasing population diversity in functional mapping. Linking these variants, genes, metabolites, and traits into a network, we elucidated mechanisms through which T2D-associated variation may impact disease risk. Finally, we showed that drugs targeting effector proteins were enriched in those approved to treat T2D, highlighting the potential of these results to prioritize drug targets for T2D. These results represent a leap in the molecular characterization of T2D-associated genetic variation and will aid in translating genetic findings into novel therapeutic strategies.

2.
Nat Med ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918629

RESUMO

Diabetes complications occur at higher rates in individuals of African ancestry. Glucose-6-phosphate dehydrogenase deficiency (G6PDdef), common in some African populations, confers malaria resistance, and reduces hemoglobin A1c (HbA1c) levels by shortening erythrocyte lifespan. In a combined-ancestry genome-wide association study of diabetic retinopathy, we identified nine loci including a G6PDdef causal variant, rs1050828 -T (Val98Met), which was also associated with increased risk of other diabetes complications. The effect of rs1050828 -T on retinopathy was fully mediated by glucose levels. In the years preceding diabetes diagnosis and insulin prescription, glucose levels were significantly higher and HbA1c significantly lower in those with versus without G6PDdef. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, participants with G6PDdef had significantly higher hazards of incident retinopathy and neuropathy. At the same HbA1c levels, G6PDdef participants in both ACCORD and the Million Veteran Program had significantly increased risk of retinopathy. We estimate that 12% and 9% of diabetic retinopathy and neuropathy cases, respectively, in participants of African ancestry are due to this exposure. Across continentally defined ancestral populations, the differences in frequency of rs1050828 -T and other G6PDdef alleles contribute to disparities in diabetes complications. Diabetes management guided by glucose or potentially genotype-adjusted HbA1c levels could lead to more timely diagnoses and appropriate intensification of therapy, decreasing the risk of diabetes complications in patients with G6PDdef alleles.

3.
Sci Rep ; 14(1): 14009, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890458

RESUMO

Type 2 diabetes (T2D) is caused by both genetic and environmental factors and is associated with an increased risk of cardiorenal complications and mortality. Though disproportionately affected by the condition, African Americans (AA) are largely underrepresented in genetic studies of T2D, and few estimates of heritability have been calculated in this race group. Using genome-wide association study (GWAS) data paired with phenotypic data from ~ 19,300 AA participants of the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, Genetics of Hypertension Associated Treatments (GenHAT) study, and the Electronic Medical Records and Genomics (eMERGE) network, we estimated narrow-sense heritability using two methods: Linkage-Disequilibrium Adjusted Kinships (LDAK) and Genome-Wide Complex Trait Analysis (GCTA). Study-level heritability estimates adjusting for age, sex, and genetic ancestry ranged from 18% to 34% across both methods. Overall, the current study narrows the expected range for T2D heritability in this race group compared to prior estimates, while providing new insight into the genetic basis of T2D in AAs for ongoing genetic discovery efforts.


Assuntos
Negro ou Afro-Americano , Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Diabetes Mellitus Tipo 2/genética , Negro ou Afro-Americano/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Polimorfismo de Nucleotídeo Único , Desequilíbrio de Ligação , Fenótipo , Herança Multifatorial/genética
4.
J Am Heart Assoc ; 13(10): e029228, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38761071

RESUMO

BACKGROUND: Established cardiovascular disease (CVD) risk prediction functions may not accurately predict CVD risk in people with HIV. We assessed the performance of 3 CVD risk prediction functions in 2 HIV cohorts. METHODS AND RESULTS: CVD risk scores were calculated in the Mass General Brigham and Kaiser Permanente Northern California HIV cohorts, using the American College of Cardiology/American Heart Association atherosclerotic CVD function, the FHS (Framingham Heart Study) hard coronary heart disease function and the Framingham Heart Study hard CVD function. Outcomes were myocardial infarction or coronary death for FHS hard coronary heart disease function; and myocardial infarction, stroke, or coronary death for American College of Cardiology/American Heart Association and FHS hard CVD function. We calculated regression coefficients and assessed discrimination and calibration by sex; predicted to observed risk of outcome was also compared. In the combined cohort of 9412, 158 (1.7%) had a coronary heart disease event, and 309 (3.3%) had a CVD event. Among women, CVD risk was generally underestimated by all 3 risk functions. Among men, CVD risk was underestimated by the American College of Cardiology/American Heart Association and FHS hard CVD function, but overestimated by the FHS hard coronary heart disease function. Calibration was poor for women using the FHS hard CVD function and for men using all functions. Discrimination in all functions was good for women (c-statistics ranging from 0.78 to 0.90) and moderate for men (c-statistics ranging from 0.71 to 0.72). CONCLUSIONS: Established CVD risk prediction functions generally underestimate risk in people with HIV. Differences in model performance by sex underscore the need for both HIV-specific and sex-specific functions. Development of CVD risk prediction models tailored to HIV will enhance care for aging people with HIV.


Assuntos
Doenças Cardiovasculares , Infecções por HIV , Fatores de Risco de Doenças Cardíacas , Humanos , Feminino , Masculino , Infecções por HIV/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/diagnóstico , Medição de Risco/métodos , Pessoa de Meia-Idade , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/diagnóstico , Adulto , California/epidemiologia , Fatores Sexuais , Prognóstico , Fatores de Risco , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/diagnóstico
5.
Genome Med ; 16(1): 63, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671457

RESUMO

BACKGROUND: The clinical utility of genetic information for type 2 diabetes (T2D) prediction with polygenic scores (PGS) in ancestrally diverse, real-world US healthcare systems is unclear, especially for those at low clinical phenotypic risk for T2D. METHODS: We tested the association of PGS with T2D incidence in patients followed within a primary care practice network over 16 years in four hypothetical scenarios that varied by clinical data availability (N = 14,712): (1) age and sex; (2) age, sex, body mass index (BMI), systolic blood pressure, and family history of T2D; (3) all variables in (2) and random glucose; and (4) all variables in (3), HDL, total cholesterol, and triglycerides, combined in a clinical risk score (CRS). To determine whether genetic effects differed by baseline clinical risk, we tested for interaction with the CRS. RESULTS: PGS was associated with incident T2D in all models. Adjusting for age and sex only, the Hazard Ratio (HR) per PGS standard deviation (SD) was 1.76 (95% CI 1.68, 1.84) and the HR of top 5% of PGS vs interquartile range (IQR) was 2.80 (2.39, 3.28). Adjusting for the CRS, the HR per SD was 1.48 (1.40, 1.57) and HR of the top 5% of PGS vs IQR was 2.09 (1.72, 2.55). Genetic effects differed by baseline clinical risk ((PGS-CRS interaction p = 0.05; CRS below the median: HR 1.60 (1.43, 1.79); CRS above the median: HR 1.45 (1.35, 1.55)). CONCLUSIONS: Genetic information can help identify high-risk patients even among those perceived to be low risk in a clinical evaluation.


Assuntos
Diabetes Mellitus Tipo 2 , Herança Multifatorial , Humanos , Diabetes Mellitus Tipo 2/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Incidência , Médicos de Atenção Primária , Adulto , Fatores de Risco , Predisposição Genética para Doença , Estudos Longitudinais , Atenção Primária à Saúde , Estudos de Coortes
6.
Diabetes ; 73(6): 993-1001, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38470993

RESUMO

African Americans (AAs) have been underrepresented in polygenic risk score (PRS) studies. Here, we integrated genome-wide data from multiple observational studies on type 2 diabetes (T2D), encompassing a total of 101,987 AAs, to train and optimize an AA-focused T2D PRS (PRSAA), using a Bayesian polygenic modeling method. We further tested the score in three independent studies with a total of 7,275 AAs and compared the PRSAA with other published scores. Results show that a 1-SD increase in the PRSAA was associated with 40-60% increase in the odds of T2D (odds ratio [OR] 1.60, 95% CI 1.37-1.88; OR 1.40, 95% CI 1.16-1.70; and OR 1.45, 95% CI 1.30-1.62) across three testing cohorts. These models captured 1.0-2.6% of the variance (R2) in T2D on the liability scale. The positive predictive values for three calculated score thresholds (the top 2%, 5%, and 10%) ranged from 14 to 35%. The PRSAA, in general, performed similarly to existing T2D PRS. The need remains for larger data sets to continue to evaluate the utility of within-ancestry scores in the AA population.


Assuntos
Negro ou Afro-Americano , Diabetes Mellitus Tipo 2 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Herança Multifatorial , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiologia , Negro ou Afro-Americano/genética , Herança Multifatorial/genética , Masculino , Feminino , Pessoa de Meia-Idade , Teorema de Bayes , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Adulto , Idoso
7.
Nat Med ; 30(2): 480-487, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374346

RESUMO

Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer. Standardized metrics were considered in the selection process, with additional consideration given to strength of evidence in African and Hispanic populations. We then developed a pipeline for clinical PRS implementation (score transfer to a clinical laboratory, validation and verification of score performance), and used genetic ancestry to calibrate PRS mean and variance, utilizing genetically diverse data from 13,475 participants of the All of Us Research Program cohort to train and test model parameters. Finally, we created a framework for regulatory compliance and developed a PRS clinical report for return to providers and for inclusion in an additional genome-informed risk assessment. The initial experience from eMERGE can inform the approach needed to implement PRS-based testing in diverse clinical settings.


Assuntos
Doença Crônica , Estratificação de Risco Genético , Saúde da População , Adulto , Criança , Humanos , Comunicação , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fatores de Risco , Estados Unidos
8.
medRxiv ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38014167

RESUMO

Objectives: To develop, validate and implement algorithms to identify diabetic retinopathy (DR) cases and controls from electronic health care records (EHR)s. Methods : We developed and validated EHR-based algorithms to identify DR cases and individuals with type I or II diabetes without DR (controls) in three independent EHR systems: Vanderbilt University Medical Center Synthetic Derivative (VUMC), the VA Northeast Ohio Healthcare System (VANEOHS), and Massachusetts General Brigham (MGB). Cases were required to meet one of three criteria: 1) two or more dates with any DR ICD-9/10 code documented in the EHR, or 2) at least one affirmative health-factor or EPIC code for DR along with an ICD9/10 code for DR on a different day, or 3) at least one ICD-9/10 code for any DR occurring within 24 hours of an ophthalmology exam. Criteria for controls included affirmative evidence for diabetes as well as an ophthalmology exam. Results: The algorithms, developed and evaluated in VUMC through manual chart review, resulted in a positive predictive value (PPV) of 0.93 for cases and negative predictive value (NPV) of 0.97 for controls. Implementation of algorithms yielded similar metrics in VANEOHS (PPV=0.94; NPV=0.86) and lower in MGB (PPV=0.84; NPV=0.76). In comparison, use of DR definition as implemented in Phenome-wide association study (PheWAS) in VUMC, yielded similar PPV (0.92) but substantially reduced NPV (0.48). Implementation of the algorithms to the Million Veteran Program identified over 62,000 DR cases with genetic data including 14,549 African Americans and 6,209 Hispanics with DR. Conclusions/Discussion: We demonstrate the robustness of the algorithms at three separate health-care centers, with a minimum PPV of 0.84 and substantially improved NPV than existing high-throughput methods. We strongly encourage independent validation and incorporation of features unique to each EHR to enhance algorithm performance for DR cases and controls.

9.
Res Sq ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37790568

RESUMO

Hyperinsulinemia is a complex and heterogeneous phenotype that characterizes molecular alterations that precede the development of type 2 diabetes (T2D). It results from a complex combination of molecular processes, including insulin secretion and insulin sensitivity, that differ between individuals. To better understand the physiology of hyperinsulinemia and ultimately T2D, we implemented a genetic approach grouping fasting insulin (FI)-associated genetic variants based on their molecular and phenotypic similarities. We identified seven distinctive genetic clusters representing different physiologic mechanisms leading to rising FI levels, ranging from clusters of variants with effects on increased FI, but without increased risk of T2D (non-diabetogenic hyperinsulinemia), to clusters of variants that increase FI and T2D risk with demonstrated strong effects on body fat distribution, liver, lipid, and inflammatory processes (diabetogenic hyperinsulinemia). We generated cluster-specific polygenic scores in 1,104,258 individuals from five multi-ancestry cohorts to show that the clusters differed in associations with cardiometabolic traits. Among clusters characterized by non-diabetogenic hyperinsulinemia, there was both increased and decreased risk of coronary artery disease despite the non-increased risk of T2D. Similarly, the clusters characterized by diabetogenic hyperinsulinemia were associated with an increased risk of T2D, yet had differing risks of cardiovascular conditions, including coronary artery disease, myocardial infarction, and stroke. The strongest cluster-T2D associations were observed with the same direction of effect in non-Hispanic Black, Hispanic, non-Hispanic White, and non-Hispanic East Asian populations. These genetic clusters provide important insights into granular metabolic processes underlying the physiology of hyperinsulinemia, notably highlighting specific processes that decouple increasing FI levels from T2D and cardiovascular risk. Our findings suggest that increasing FI levels are not invariably associated with adverse cardiometabolic outcomes.

10.
Commun Med (Lond) ; 3(1): 138, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798471

RESUMO

BACKGROUND: Heterogeneity in type 2 diabetes presentation and progression suggests that precision medicine interventions could improve clinical outcomes. We undertook a systematic review to determine whether strategies to subclassify type 2 diabetes were associated with high quality evidence, reproducible results and improved outcomes for patients. METHODS: We searched PubMed and Embase for publications that used 'simple subclassification' approaches using simple categorisation of clinical characteristics, or 'complex subclassification' approaches which used machine learning or 'omics approaches in people with established type 2 diabetes. We excluded other diabetes subtypes and those predicting incident type 2 diabetes. We assessed quality, reproducibility and clinical relevance of extracted full-text articles and qualitatively synthesised a summary of subclassification approaches. RESULTS: Here we show data from 51 studies that demonstrate many simple stratification approaches, but none have been replicated and many are not associated with meaningful clinical outcomes. Complex stratification was reviewed in 62 studies and produced reproducible subtypes of type 2 diabetes that are associated with outcomes. Both approaches require a higher grade of evidence but support the premise that type 2 diabetes can be subclassified into clinically meaningful subtypes. CONCLUSION: Critical next steps toward clinical implementation are to test whether subtypes exist in more diverse ancestries and whether tailoring interventions to subtypes will improve outcomes.


In people with type 2 diabetes there may be differences in the way people present, including for example, their symptoms, body weight or how much insulin they make. We looked at recent publications describing research in this area to see whether it is possible to separate people with type 2 diabetes into different subgroups and, if so, whether these groupings were useful for patients. We found that it is possible to group people with type 2 diabetes into different subgroups and being in one subgroup can be more strongly linked to the likelihood of developing complications over others. This might mean that in the future we can treat people in different subgroups differently in ways that improves their treatment and their health but it requires further study.

11.
Clin Epigenetics ; 15(1): 173, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891690

RESUMO

BACKGROUND: Insulin resistance (IR) is a major risk factor for Alzheimer's disease (AD) dementia. The mechanisms by which IR predisposes to AD are not well-understood. Epigenetic studies may help identify molecular signatures of IR associated with AD, thus improving our understanding of the biological and regulatory mechanisms linking IR and AD. METHODS: We conducted an epigenome-wide association study of IR, quantified using the homeostatic model assessment of IR (HOMA-IR) and adjusted for body mass index, in 3,167 participants from the Framingham Heart Study (FHS) without type 2 diabetes at the time of blood draw used for methylation measurement. We identified DNA methylation markers associated with IR at the genome-wide level accounting for multiple testing (P < 1.1 × 10-7) and evaluated their association with neurological traits in participants from the FHS (N = 3040) and the Religious Orders Study/Memory and Aging Project (ROSMAP, N = 707). DNA methylation profiles were measured in blood (FHS) or dorsolateral prefrontal cortex (ROSMAP) using the Illumina HumanMethylation450 BeadChip. Linear regressions (ROSMAP) or mixed-effects models accounting for familial relatedness (FHS) adjusted for age, sex, cohort, self-reported race, batch, and cell type proportions were used to assess associations between DNA methylation and neurological traits accounting for multiple testing. RESULTS: We confirmed the strong association of blood DNA methylation with IR at three loci (cg17901584-DHCR24, cg17058475-CPT1A, cg00574958-CPT1A, and cg06500161-ABCG1). In FHS, higher levels of blood DNA methylation at cg00574958 and cg17058475 were both associated with lower IR (P = 2.4 × 10-11 and P = 9.0 × 10-8), larger total brain volumes (P = 0.03 and P = 9.7 × 10-4), and smaller log lateral ventricular volumes (P = 0.07 and P = 0.03). In ROSMAP, higher levels of brain DNA methylation at the same two CPT1A markers were associated with greater risk of cognitive impairment (P = 0.005 and P = 0.02) and higher AD-related indices (CERAD score: P = 5 × 10-4 and 0.001; Braak stage: P = 0.004 and P = 0.01). CONCLUSIONS: Our results suggest potentially distinct epigenetic regulatory mechanisms between peripheral blood and dorsolateral prefrontal cortex tissues underlying IR and AD at CPT1A locus.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Doença de Alzheimer/genética , Diabetes Mellitus Tipo 2/genética , Metilação de DNA , Epigênese Genética , Marcadores Genéticos , Estudo de Associação Genômica Ampla/métodos , Resistência à Insulina/genética
12.
J Endocr Soc ; 7(11): bvad123, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37841955

RESUMO

Context: Both type 1 diabetes (T1D) and type 2 diabetes (T2D) have significant genetic contributions to risk and understanding their overlap can offer clinical insight. Objective: We examined whether a T1D polygenic score (PS) was associated with a diagnosis of T2D in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Methods: We constructed a T1D PS using 79 known single nucleotide polymorphisms associated with T1D risk. We analyzed 13 792 T2D cases and 14 169 controls from CHARGE cohorts to determine the association between the T1D PS and T2D prevalence. We validated findings in an independent sample of 2256 T2D cases and 27 052 controls from the Mass General Brigham Biobank (MGB Biobank). As secondary analyses in 5228 T2D cases from CHARGE, we used multivariable regression models to assess the association of the T1D PS with clinical outcomes associated with T1D. Results: The T1D PS was not associated with T2D both in CHARGE (P = .15) and in the MGB Biobank (P = .87). The partitioned human leukocyte antigens only PS was associated with T2D in CHARGE (OR 1.02 per 1 SD increase in PS, 95% CI 1.01-1.03, P = .006) but not in the MGB Biobank. The T1D PS was weakly associated with insulin use (OR 1.007, 95% CI 1.001-1.012, P = .03) in CHARGE T2D cases but not with other outcomes. Conclusion: In large biobank samples, a common variant PS for T1D was not consistently associated with prevalent T2D. However, possible heterogeneity in T2D cannot be ruled out and future studies are needed do subphenotyping.

13.
medRxiv ; 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37732255

RESUMO

OBJECTIVE: The clinical utility of genetic information for type 2 diabetes (T2D) prediction with polygenic score (PGS) in ancestrally diverse, real-world US healthcare systems is unclear, especially for those at low clinical phenotypic risk for T2D. RESEARCH DESIGN AND METHODS: We tested the association of PGS with T2D incidence in patients followed within a primary care practice network over 16 years in four hypothetical scenarios that varied by clinical data availability (N = 14,712): 1) age and sex, 2) age, sex, BMI, systolic blood pressure, and family history of diabetes; 3) all variables in (2) and random glucose; 4) all variables in (3), HDL, total cholesterol, and triglycerides, combined in a clinical risk score (CRS). To determine whether genetic effects differed by baseline clinical risk, we tested for interaction with the CRS. RESULTS: PGS was associated with incident diabetes in all models. Adjusting for age and sex only, the Hazard Ratio (HR) per PGS standard deviation (SD) was 1.76 (95% CI 1.68, 1.84) and the HR of top 5% of PGS vs interquartile range (IQR) was 2.80 (2.39, 3.28). Adjusting for the CRS, the HR per SD was 1.48 (1.40, 1.57) and HR of top 5% of PGS vs IQR was 2.09 (1.72, 2.55). Genetic effects differed by baseline clinical risk [(PGS-CRS interaction p =0.05; CRS below the median: HR 1.60 (1.43, 1.79); CRS above the median: HR 1.45 (1.35, 1.55)]. CONCLUSIONS: Genetic information can help identify high-risk patients even among those perceived to be low risk in a clinical evaluation.

14.
Diabetes Care ; 46(11): 1978-1985, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756531

RESUMO

OBJECTIVE: Clonal hematopoiesis of indeterminate potential (CHIP) is an aging-related accumulation of somatic mutations in hematopoietic stem cells, leading to clonal expansion. CHIP presence has been implicated in atherosclerotic coronary heart disease (CHD) and all-cause mortality, but its association with incident type 2 diabetes (T2D) is unknown. We hypothesized that CHIP is associated with elevated risk of T2D. RESEARCH DESIGN AND METHODS: CHIP was derived from whole-genome sequencing of blood DNA in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine (TOPMed) prospective cohorts. We performed analysis for 17,637 participants from six cohorts, without prior T2D, cardiovascular disease, or cancer. We evaluated baseline CHIP versus no CHIP prevalence with incident T2D, including associations with DNMT3A, TET2, ASXL1, JAK2, and TP53 variants. We estimated multivariable-adjusted hazard ratios (HRs) and 95% CIs with adjustment for age, sex, BMI, smoking, alcohol, education, self-reported race/ethnicity, and combined cohorts' estimates via fixed-effects meta-analysis. RESULTS: Mean (SD) age was 63.4 (11.5) years, 76% were female, and CHIP prevalence was 6.0% (n = 1,055) at baseline. T2D was diagnosed in n = 2,467 over mean follow-up of 9.8 years. Participants with CHIP had 23% (CI 1.04, 1.45) higher risk of T2D than those with no CHIP. Specifically, higher risk was for TET2 (HR 1.48; CI 1.05, 2.08) and ASXL1 (HR 1.76; CI 1.03, 2.99) mutations; DNMT3A was nonsignificant (HR 1.15; CI 0.93, 1.43). Statistical power was limited for JAK2 and TP53 analyses. CONCLUSIONS: CHIP was associated with higher incidence of T2D. CHIP mutations located on genes implicated in CHD and mortality were also related to T2D, suggesting shared aging-related pathology.


Assuntos
Doença das Coronárias , Diabetes Mellitus Tipo 2 , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Hematopoiese Clonal/genética , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Estudos Prospectivos , Hematopoese/genética , Evolução Clonal , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Mutação
17.
medRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333246

RESUMO

Polygenic risk scores (PRS) have improved in predictive performance supporting their use in clinical practice. Reduced predictive performance of PRS in diverse populations can exacerbate existing health disparities. The NHGRI-funded eMERGE Network is returning a PRS-based genome-informed risk assessment to 25,000 diverse adults and children. We assessed PRS performance, medical actionability, and potential clinical utility for 23 conditions. Standardized metrics were considered in the selection process with additional consideration given to strength of evidence in African and Hispanic populations. Ten conditions were selected with a range of high-risk thresholds: atrial fibrillation, breast cancer, chronic kidney disease, coronary heart disease, hypercholesterolemia, prostate cancer, asthma, type 1 diabetes, obesity, and type 2 diabetes. We developed a pipeline for clinical PRS implementation, used genetic ancestry to calibrate PRS mean and variance, created a framework for regulatory compliance, and developed a PRS clinical report. eMERGE's experience informs the infrastructure needed to implement PRS-based implementation in diverse clinical settings.

18.
Diabetologia ; 66(7): 1273-1288, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148359

RESUMO

AIMS/HYPOTHESIS: The Latino population has been systematically underrepresented in large-scale genetic analyses, and previous studies have relied on the imputation of ungenotyped variants based on the 1000 Genomes (1000G) imputation panel, which results in suboptimal capture of low-frequency or Latino-enriched variants. The National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) released the largest multi-ancestry genotype reference panel representing a unique opportunity to analyse rare genetic variations in the Latino population. We hypothesise that a more comprehensive analysis of low/rare variation using the TOPMed panel would improve our knowledge of the genetics of type 2 diabetes in the Latino population. METHODS: We evaluated the TOPMed imputation performance using genotyping array and whole-exome sequence data in six Latino cohorts. To evaluate the ability of TOPMed imputation to increase the number of identified loci, we performed a Latino type 2 diabetes genome-wide association study (GWAS) meta-analysis in 8150 individuals with type 2 diabetes and 10,735 control individuals and replicated the results in six additional cohorts including whole-genome sequence data from the All of Us cohort. RESULTS: Compared with imputation with 1000G, the TOPMed panel improved the identification of rare and low-frequency variants. We identified 26 genome-wide significant signals including a novel variant (minor allele frequency 1.7%; OR 1.37, p=3.4 × 10-9). A Latino-tailored polygenic score constructed from our data and GWAS data from East Asian and European populations improved the prediction accuracy in a Latino target dataset, explaining up to 7.6% of the type 2 diabetes risk variance. CONCLUSIONS/INTERPRETATION: Our results demonstrate the utility of TOPMed imputation for identifying low-frequency variants in understudied populations, leading to the discovery of novel disease associations and the improvement of polygenic scores. DATA AVAILABILITY: Full summary statistics are available through the Common Metabolic Diseases Knowledge Portal ( https://t2d.hugeamp.org/downloads.html ) and through the GWAS catalog ( https://www.ebi.ac.uk/gwas/ , accession ID: GCST90255648). Polygenic score (PS) weights for each ancestry are available via the PGS catalog ( https://www.pgscatalog.org , publication ID: PGP000445, scores IDs: PGS003443, PGS003444 and PGS003445).


Assuntos
Diabetes Mellitus Tipo 2 , Saúde da População , Humanos , Estudo de Associação Genômica Ampla , Diabetes Mellitus Tipo 2/genética , Medicina de Precisão , Genótipo , Hispânico ou Latino/genética , Polimorfismo de Nucleotídeo Único/genética
19.
medRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131632

RESUMO

Heterogeneity in type 2 diabetes presentation, progression and treatment has the potential for precision medicine interventions that can enhance care and outcomes for affected individuals. We undertook a systematic review to ascertain whether strategies to subclassify type 2 diabetes are associated with improved clinical outcomes, show reproducibility and have high quality evidence. We reviewed publications that deployed 'simple subclassification' using clinical features, biomarkers, imaging or other routinely available parameters or 'complex subclassification' approaches that used machine learning and/or genomic data. We found that simple stratification approaches, for example, stratification based on age, body mass index or lipid profiles, had been widely used, but no strategy had been replicated and many lacked association with meaningful outcomes. Complex stratification using clustering of simple clinical data with and without genetic data did show reproducible subtypes of diabetes that had been associated with outcomes such as cardiovascular disease and/or mortality. Both approaches require a higher grade of evidence but support the premise that type 2 diabetes can be subclassified into meaningful groups. More studies are needed to test these subclassifications in more diverse ancestries and prove that they are amenable to interventions.

20.
Circ Genom Precis Med ; 16(1): e003858, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36598822

RESUMO

BACKGROUND: Whether genetics contribute to the rising prevalence of obesity or its cardiovascular consequences in today's obesogenic environment remains unclear. We sought to determine whether the effects of a higher aggregate genetic burden of obesity risk on body mass index (BMI) or cardiovascular disease (CVD) differed by birth year. METHODS: We split the FHS (Framingham Heart Study) into 4 equally sized birth cohorts (birth year before 1932, 1932 to 1946, 1947 to 1959, and after 1960). We modeled a genetic predisposition to obesity using an additive genetic risk score (GRS) of 941 BMI-associated variants and tested for GRS-birth year interaction on log-BMI (outcome) when participants were around 50 years old (N=7693). We repeated the analysis using a GRS of 109 BMI-associated variants that increased CVD risk factors (type 2 diabetes, blood pressure, total cholesterol, and high-density lipoprotein) in addition to BMI. We then evaluated whether the effects of the BMI GRSs on CVD risk differed by birth cohort when participants were around 60 years old (N=5493). RESULTS: Compared with participants born before 1932 (mean age, 50.8 yrs [2.4]), those born after 1960 (mean age, 43.3 years [4.5]) had higher BMI (median, 25.4 [23.3-28.0] kg/m2 versus 26.9 [interquartile range, 23.7-30.6] kg/m2). The effect of the 941-variant BMI GRS on BMI and CVD risk was stronger in people who were born in later years (GRS-birth year interaction: P=0.0007 and P=0.04 respectively). CONCLUSIONS: The significant GRS-birth year interactions indicate that common genetic variants have larger effects on middle-age BMI and CVD risk in people born more recently. These findings suggest that the increasingly obesogenic environment may amplify the impact of genetics on the risk of obesity and possibly its cardiovascular consequences.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Pessoa de Meia-Idade , Humanos , Adulto , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Índice de Massa Corporal , Obesidade/epidemiologia , Obesidade/genética , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...