Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Radiology ; 296(3): E166-E172, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32384019

RESUMO

Background Chest radiography may play an important role in triage for coronavirus disease 2019 (COVID-19), particularly in low-resource settings. Purpose To evaluate the performance of an artificial intelligence (AI) system for detection of COVID-19 pneumonia on chest radiographs. Materials and Methods An AI system (CAD4COVID-XRay) was trained on 24 678 chest radiographs, including 1540 used only for validation while training. The test set consisted of a set of continuously acquired chest radiographs (n = 454) obtained in patients suspected of having COVID-19 pneumonia between March 4 and April 6, 2020, at one center (223 patients with positive reverse transcription polymerase chain reaction [RT-PCR] results, 231 with negative RT-PCR results). Radiographs were independently analyzed by six readers and by the AI system. Diagnostic performance was analyzed with the receiver operating characteristic curve. Results For the test set, the mean age of patients was 67 years ± 14.4 (standard deviation) (56% male). With RT-PCR test results as the reference standard, the AI system correctly classified chest radiographs as COVID-19 pneumonia with an area under the receiver operating characteristic curve of 0.81. The system significantly outperformed each reader (P < .001 using the McNemar test) at their highest possible sensitivities. At their lowest sensitivities, only one reader significantly outperformed the AI system (P = .04). Conclusion The performance of an artificial intelligence system in the detection of coronavirus disease 2019 on chest radiographs was comparable with that of six independent readers. © RSNA, 2020.


Assuntos
Inteligência Artificial , Infecções por Coronavirus/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Torácica/métodos , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , COVID-19 , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Curva ROC , SARS-CoV-2 , Tomografia Computadorizada por Raios X
2.
Sci Rep ; 10(1): 5492, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32218458

RESUMO

There is a growing interest in the automated analysis of chest X-Ray (CXR) as a sensitive and inexpensive means of screening susceptible populations for pulmonary tuberculosis. In this work we evaluate the latest version of CAD4TB, a commercial software platform designed for this purpose. Version 6 of CAD4TB was released in 2018 and is here tested on a fully independent dataset of 5565 CXR images with GeneXpert (Xpert) sputum test results available (854 Xpert positive subjects). A subset of 500 subjects (50% Xpert positive) was reviewed and annotated by 5 expert observers independently to obtain a radiological reference standard. The latest version of CAD4TB is found to outperform all previous versions in terms of area under receiver operating curve (ROC) with respect to both Xpert and radiological reference standards. Improvements with respect to Xpert are most apparent at high sensitivity levels with a specificity of 76% obtained at a fixed 90% sensitivity. When compared with the radiological reference standard, CAD4TB v6 also outperformed previous versions by a considerable margin and achieved 98% specificity at the 90% sensitivity setting. No substantial difference was found between the performance of CAD4TB v6 and any of the various expert observers against the Xpert reference standard. A cost and efficiency analysis on this dataset demonstrates that in a standard clinical situation, operating at 90% sensitivity, users of CAD4TB v6 can process 132 subjects per day at an average cost per screen of $5.95 per subject, while users of version 3 process only 85 subjects per day at a cost of $8.38 per subject. At all tested operating points version 6 is shown to be more efficient and cost effective than any other version.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Software , Tuberculose Pulmonar/diagnóstico por imagem , Adulto , Bases de Dados Factuais , Prova Pericial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Paquistão , Interpretação de Imagem Radiográfica Assistida por Computador/estatística & dados numéricos , Radiografia Torácica/estatística & dados numéricos , Sensibilidade e Especificidade , Adulto Jovem
3.
PLoS Comput Biol ; 13(4): e1005478, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28399121

RESUMO

[This corrects the article DOI: 10.1371/journal.pcbi.1005374.].

4.
PLoS Comput Biol ; 13(1): e1005374, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28141820

RESUMO

Our understanding of the wiring map of the brain, known as the connectome, has increased greatly in the last decade, mostly due to technological advancements in neuroimaging techniques and improvements in computational tools to interpret the vast amount of available data. Despite this, with the exception of the C. elegans roundworm, no definitive connectome has been established for any species. In order to obtain this, tracer studies are particularly appealing, as these have proven highly reliable. The downside of tract tracing is that it is costly to perform, and can only be applied ex vivo. In this paper, we suggest that instead of probing all possible connections, hitherto unknown connections may be predicted from the data that is already available. Our approach uses a 'latent space model' that embeds the connectivity in an abstract physical space. Regions that are close in the latent space have a high chance of being connected, while regions far apart are most likely disconnected in the connectome. After learning the latent embedding from the connections that we did observe, the latent space allows us to predict connections that have not been probed previously. We apply the methodology to two connectivity data sets of the macaque, where we demonstrate that the latent space model is successful in predicting unobserved connectivity, outperforming two baselines and an alternative model in nearly all cases. Furthermore, we show how the latent spatial embedding may be used to integrate multimodal observations (i.e. anterograde and retrograde tracers) for the mouse neocortex. Finally, our probabilistic approach enables us to make explicit which connections are easy to predict and which prove difficult, allowing for informed follow-up studies.


Assuntos
Encéfalo/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Conectoma/métodos , Imagem de Tensor de Difusão/métodos , Modelos Neurológicos , Substância Branca/anatomia & histologia , Animais , Artefatos , Simulação por Computador , Macaca , Modelos Anatômicos , Modelos Estatísticos , Tamanho da Amostra , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...