Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 63(1): 46-55, 1999 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-10099580

RESUMO

The influence of the factors acetic acid, furfural, and p-hydroxybenzoic acid on the ethanol yield (YEtOH) of Saccharomyces cerevisiae, bakers' yeast, S. cerevisiae ATCC 96581, and Candida shehatae NJ 23 was investigated using a 2(3)-full factorial design with 3 centrepoints. The results indicated that acetic acid inhibited the fermentation by C. shehatae NJ 23 markedly more than by bakers' yeast, whereas no significant difference in tolerance towards the compounds was detected between the S. cerevisiae strains. Furfural (2 g L-1) and the lignin derived compound p-hydroxybenzoic acid (2 g L-1) did not affect any of the yeasts at the cell mass concentration used. The results indicated that the linear model was not adequate to describe the experimental data (the p-values of curvatures were 0.048 for NJ 23 and 0.091 for bakers' yeast). Based on the results from the 2(3)-full factorial experiment, an extended experiment was designed based on a central composite design to investigate the influence of the factors on the specific growth rate (mu), biomass yield (Yx), volumetric ethanol productivity (QEtOH), and YEtOH. Bakers' yeast was chosen in the extended experiment due to its better tolerance towards acetic acid, which makes it a more interesting organism for use in industrial fermentations of lignocellulosic hydrolysates. The inoculum size was reduced in the extended experiment to reduce any increase in inhibitor tolerance that might be due to a large cell inoculum. By dividing the experiment in blocks containing fermentations performed with the same inoculum preparation on the same day, much of the anticipated systematic variation between the experiments was separated from the experimental error. The results of the fitted model can be summarised as follows: mu was decreased by furfural (0-3 g L-1). Furfural and acetic acid (0-10 g L-1) also interacted negatively on mu. Furfural concentrations up to 2 g L-1 stimulated Yx in the absence of acetic acid whereas higher concentrations decreased Yx. The two compounds interacted negatively on Yx and YEtOH. Acetic acid concentrations up to 9 g L-1 stimulated QEtOH, whereas furfural (0-3 g L-1) decreased QEtOH. Acetic acid in concentrations up to 10 g L-1 stimulated YEtOH in the absence of furfural, and furfural (0-2 g L-1) slightly increased YEtOH in the absence of acetic acid whereas higher concentrations caused inhibition. Acetic acid and furfural interacted negatively on YEtOH.


Assuntos
Candida/crescimento & desenvolvimento , Candida/metabolismo , Etanol/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Ácido Acético/farmacologia , Biomassa , Reatores Biológicos , Candida/efeitos dos fármacos , Intervalos de Confiança , Furaldeído/farmacologia , Glucose/metabolismo , Cinética , Parabenos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Especificidade da Espécie
2.
Appl Environ Microbiol ; 63(5): 1959-64, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9143128

RESUMO

Conversion of xylose to xylitol by recombinant Saccharomyces cerevisiae expressing the XYL1 gene, encoding xylose reductase, was investigated by using different cosubstrates as generators of reduced cofactors. The effect of a pulse addition of the cosubstrate on xylose conversion in cosubstrate-limited fed-batch cultivation was studied. Glucose, mannose, and fructose, which are transported with high affinity by the same transport system as is xylose, inhibited xylose conversion by 99, 77, and 78%, respectively, reflecting competitive inhibition of xylose transport. Pulse addition of maltose, which is transported by a specific transport system, did not inhibit xylose conversion. Pulse addition of galactose, which is also transported by a specific transporter, inhibited xylose conversion by 51%, in accordance with noncompetitive inhibition between the galactose and glucose/ xylose transport systems. Pulse addition of ethanol inhibited xylose conversion by 15%, explained by inhibition of xylose transport through interference with the hydrophobic regions of the cell membrane. The xylitol yields on the different cosubstrates varied widely. Galactose gave the highest xylitol yield, 5.6 times higher than that for glucose. The difference in redox metabolism of glucose and galactose was suggested to enhance the availability of reduced cofactors for xylose reduction with galactose. The differences in xylitol yield observed between some of the other sugars may also reflect differences in redox metabolism. With all cosubstrates, the xylitol yield was higher under cosubstrate limitation than with cosubstrate excess.


Assuntos
Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Membrana Celular/metabolismo , Etanol/metabolismo , Frutose/metabolismo , Galactose/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Maltose/metabolismo , Manose/metabolismo , Oxirredução , Xilitol/metabolismo
3.
Biotechnol Bioeng ; 54(4): 391-9, 1997 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18634106

RESUMO

Xylitol production with two recombinant Sacharomyces cerevisiae strains expressing the XYL1 gene, coding for xylose reductase (XR), at different levels, the 'low XR strain' at 0.51 U/mg and the 'high XR strain' at 10.8 U/mg, was compared in batch and fed-batch culture. Xylose was not consumed in the presence of high glucose concentrations, because both sugars are transported by the glucose transport system, which has a higher affinity for glucose than for xylose. When glucose was fed gradually to the culture, high concentrations were avoided, and xylose was converted to xylitol with a specific productivity of 0.10 g g(-1) h(-1) attained with the low XR strain and 0.19 g g(-1) h(-1) with the high XR strain, indicating that factors other than the XR-activity control the rate of xylose conversion.The overproduction of XR put a substantial protein burden on the high XR strain, contributing to a 50% decrease in specific growth rate and reduced biomass yield compared with the low XR strain. Despite the use of selective medium, the stability of the high XR strain was poor in long fed-batch and chemostat cultures, whereas the low XR strain was stable. The high XR strain lost its XR activity almost completely in some fed-batch cultures and in chemostat culture. In chemostat cultivation, part of the population lost the plasmid harboring the XR gene. This was due to the fact that leucine was released into the broth from plasmid containing cells, which enabled some cells to grow without the plasmid containing the LEU2 auxotrophic complementation selection marker. Furthermore, isolation and analysis of plasmids from a population that had lost its XR activity, showed that in addition to the original plasmid, a rearranged form of the plasmid, retaining the selection marker but not the expression of active XR, was present. However, these observations could only partly explain the decrease in XR activity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 391-399, 1997.

4.
Biotechnol Bioeng ; 51(3): 317-26, 1996 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18624364

RESUMO

Continuous xylitol production with two different immobilized recombinant Saccharomyces cerevisiae strains (H475 and S641), expressing low and high xylose reductase (XR) activities, was investigated in a lab-scale packed-bed bioreactor. The effect of hydraulic residence time (HRT; 1.3-11.3 h), substrate/cosubstrate ratio (0.5 and 1), recycling ratio (0, 5, and 10), and aeration (anaerobic and oxygen limited conditions) were studied. The cells were immobilized by gel entrapment using Ca-alginate as support and the beads were treated with Al(3+) to improve their mechanical strength. Xylose was converted to xylitol using glucose as cosubstrate for regeneration of NAD(P)H required in xylitol formation and for generation of maintenance energy. The stability of the recombinant strains after 15 days of continuous operation was evaluated by XR activity and plasmid retention analyses. Under anaerobic conditions the volumetric xylitol productivity increased with decreasing HRT with both strains. With a recycling ratio of 10, volumetric productivities as high as 3.44 and 5.80 g/L . h were obtained with the low XR strain at HRT 1.3 h and with the high XR strain at HRT 2.6 h, respectively. However, the highest overall xylitol yields on xylose and on cosubstrate were reached at higher HRTs. Lowering the xylose/cosubstrate ratio from 1 to 0.5 increased the overall yield of xylitol on xylose, but the productivity and the xylitol yield on cosubstrate decreased. Under oxygen limited conditions the effect of the recycling ratio on production parameters was masked by other factors, such as an accumulation of free cells in the bioreactor and severe genetic instability of the high XR strain. Under anaerobic conditions the instability was less severe, causing a decrease in XR activity from 0.15 to 0.10 and from 3.18 to 1.49 U/mg with the low and high XR strains, respectively. At the end of the fermentation, the fraction of plasmid bearing cells in the beads was close to 100% for the low XR strain; however, it was significantly lower for the high XR strain, particularly for cells from the interior of the beads.

6.
Phys Rev Lett ; 75(17): 3094-3097, 1995 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-10059493
7.
Appl Microbiol Biotechnol ; 42(2-3): 326-33, 1994 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-7765774

RESUMO

Xylitol formation by a recombinant Saccharomyces cerevisiae strain containing the XYL1 gene from Pichia stipitis CBS 6054 was investigated under three sets of conditions: (a) with glucose, ethanol, acetate, or glycerol as cosubstrates, (b) with different oxygenation levels, and (c) with different ratios of xylose to cosubstrate. With both glucose and ethanol the conversion yields were close to 1 g xylitol/g consumed xylose. Decreased aeration increased the xylitol yield on the basis of consumed cosubstrate, while the rate of xylitol formation decreased. The xylitol yield based on consumed cosubstrate also increased with increased-xylose:cosubstrate ratios. The transformant utilized the cosubstrate more efficiently than did a reference strain in terms of utilization rate and growth rate, implying that the regeneration of NAD(P)+ during xylitol formation by the transformant balanced the intracellular redox potential.


Assuntos
Genes Fúngicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilitol/biossíntese , Aerobiose , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Biotecnologia , Etanol/metabolismo , Glucose/metabolismo , Cinética , NAD/metabolismo , NADP/metabolismo , Pichia/enzimologia , Pichia/genética , Especificidade por Substrato , Transformação Genética
8.
Biotechnol Bioeng ; 44(3): 322-8, 1994 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18618748

RESUMO

During a 70-h fermentation of a lignocellulose hydrolysate, the ethanol produced was monitored on-line using a microdialysis probe as an in situ sampling device. The dialysate components were then separated in a column liquid chromatographic system and the ethanol was selectively detected by an amperometric alcohol biosensor. The result was compared with two off-line analysis methods: one chromatographic method with refractive index (RI) detection and one enzymatic method based on spectrophotometric detection. The two methods base on enzymes were shown to give lower values than the chromatographic method based on RI detection, which is discussed n terms of selectivity. The investigated on-line setup was found to be a flexible system for monitoring of fermentations, allowing a sampling frequency of at least 12 h(-1) and with a delay between sampling and detection of less than 5 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...