Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543372

RESUMO

Fascinating 3D shapes arise when a thin planar sheet is folded without stretching, tearing or cutting. The elegance amplifies when the fold/crease is changed from a straight line to a curve, due to the association of plastic deformation via folding and elastic deformation via bending. This results in the curved crease working as a hinge support providing deployability to the surface which is of significant interest in industrial engineering and architectural design. Consequently, finding a stable form of curved crease becomes pivotal in the development of deployable structures. This work proposes a novel way to evaluate such curves by taking inspiration from biomimicry. For this purpose, growth mechanism in plants was observed and an analogous model was developed to create a discrete curve of fold. A parametric model was developed for digital construction of the folded models. Test cases were formulated to compare the behavior of different folded models under various loading conditions. A simplified way to visualize the obtained results is proposed using visual programming tools. The models were further translated into physical prototypes with the aid of 3D printing, hybrid and cured-composite systems, where different mechanisms were adopted to achieve the folds. The prototypes were further tested under constrained boundary and compressive loading conditions, with results validating the analytical model.

2.
Polymers (Basel) ; 15(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299265

RESUMO

Bridging the gap between the material and geometrical aspects of a structure is critical in lightweight construction. Throughout the history of structural development, shape rationalization has been of prime focus for designers and architects, with biological forms being a major source of inspiration. In this work, an attempt is made to integrate different phases of design, construction, and fabrication under a single framework of parametric modeling with the help of visual programming. The idea is to offer a novel free-form shape rationalization process that can be realized with unidirectional materials. Taking inspiration from the growth of a plant, we established a relationship between form and force, which can be translated into different shapes using mathematical operators. Different prototypes of generated shapes were constructed using a combination of existing manufacturing processes to test the validity of the concept in both isotropic and anisotropic material domains. Moreover, for each material/manufacturing combination, generated geometrical shapes were compared with other equivalent and more conventional geometrical constructions, with compressive load-test results being the qualitative measure for each use case. Eventually, a 6-axis robot emulator was integrated with the setup, and corresponding adjustments were made such that a true free-form geometry could be visualized in a 3D space, thus closing the loop of digital fabrication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...