Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Histol ; 39(1): 37-47, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17786573

RESUMO

The adequate reconstitution of human soft tissue wounds requires the coordinated interaction of endothelial cells and fibroblasts during the proliferation phase of healing. Endothelial cells assure neoangiogenesis, fibroblasts fill the defect and provide extracellular matrix proteins, and myofibroblasts are believed to support the reconstitution of microvessels. In the present study, we combined in vitro-wound size measurement and multicolour immunocytochemical staining of co-cultured human dermal microvascular endothelial cells and normal human dermal fibroblasts, recently introduced as co-culture scratch-wound migration assay. Applying antibodies for alpha-smooth-muscle actin, von Willebrand factor, extra domain A fibronectin and endothelin-1, we were able to monitor proliferation, migration and the differentiation process from fibroblasts to myofibroblasts as a response to hypoxia. Furthermore, we verified, whether transforming growth factor beta1 (TGFbeta1) and endothelin-1 are able to mediate this response. We show, that proliferation and migration of endothelial cells and fibroblasts decreased under hypoxia. The additional administration of TGFbeta1 did not significantly attenuate this decrease. Solely the myofibroblast population in co-culture adapted well to hypoxia, when cultures were supplemented with TGFbeta1. Considerating the data concerning TGFbeta1 and endothelin-1, we propose a model explaining the cellular interaction during early and late proliferation phase of human wound healing.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Contagem de Células , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Endotelina-1/metabolismo , Humanos , Imuno-Histoquímica , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Fatores de Tempo
2.
Biol Cell ; 99(4): 197-207, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17222082

RESUMO

BACKGROUND INFORMATION: Different in vitro models, based on co-culturing techniques, can be used to investigate the behaviour of cell types, which are relevant for human wound and soft-tissue healing. Currently, no model exists to describe the behaviour of fibroblasts and microvascular endothelial cells under wound-specific conditions. In order to develop a suitable in vitro model, we characterized co-cultures comprising NHDFs (normal human dermal fibroblasts) and HDMECs (human dermal microvascular endothelial cells). The CCSWMA (co-culture scratch wound migration assay) developed was supported by direct visualization techniques in order to investigate a broad spectrum of cellular parameters, such as migration and proliferation activity, the differentiation of NHDFs into MFs (myofibroblasts) and the expression of endothelin-1 and ED-A-fibronectin (extra domain A fibronectin). The cellular response to hypoxia treatment, as one of the crucial conditions in wound healing, was monitored. RESULTS: The comparison of the HDMEC-NHDF co-culture with the respective mono-cultures revealed that HDMECs showed a lower proliferation activity when co-cultured, but their number was stable throughout a period of 48 h. NHDFs in co-culture were slightly slower at proliferating than in the mono-culture. The MF population was stable for 48 h in the co-culture, as well as in NHDF mono-culture. Co-cultures and HDMEC mono-cultures were characterized by a slower migration rate than NHDF mono-cultures. Hypoxia decreased both cell proliferation and migration in the mono-cultures, as well as in the co-cultures, indicating the general suitability of the assay. Exclusively, in co-cultures well-defined cell clusters comprising HDMECs and MFs formed at the edges of the in vitro wounds. CONCLUSIONS: On the basis of these results, the CCSWMA developed using co-cultures, including HDMECs, NHDFs and MFs, proved to be an effective tool to directly visualize cellular interaction. Therefore, it will serve in the future to evaluate the influence of wound-healing-related factors in vitro, as shown for hypoxia in the present study.


Assuntos
Derme/irrigação sanguínea , Células Endoteliais/fisiologia , Fibroblastos/fisiologia , Modelos Biológicos , Cicatrização/fisiologia , Actinas/classificação , Actinas/metabolismo , Contagem de Células , Diferenciação Celular , Hipóxia Celular , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotelina-1/metabolismo , Endotélio Vascular/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibronectinas/classificação , Fibronectinas/metabolismo , Humanos , Imuno-Histoquímica , Cinética , Oxigênio/farmacologia , Antígenos Thy-1/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...