Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4304, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35973995

RESUMO

Scientifically rigorous guidance to policy makers on mitigation options for meeting the Paris Agreement long-term temperature goal requires an evaluation of long-term global-warming implications of greenhouse gas emissions pathways. Here we employ a uniform and transparent methodology to evaluate Paris Agreement compatibility of influential institutional emission scenarios from the grey literature, including those from Shell, BP, and the International Energy Agency. We compare a selection of these scenarios analysed with this methodology to the Integrated Assessment Model scenarios assessed by the Intergovernmental Panel on Climate Change. We harmonize emissions to a consistent base-year and account for all greenhouse gases and aerosol precursor emissions, ensuring a self-consistent comparison of climate variables. An evaluation of peak and end-of-century temperatures is made, with both being relevant to the Paris Agreement goal. Of the scenarios assessed, we find that only the IEA Net Zero 2050 scenario is aligned with the criteria for Paris Agreement consistency employed here. We investigate root causes for misalignment with these criteria based on the underlying energy system transformation.


Assuntos
Objetivos , Gases de Efeito Estufa , Mudança Climática , Aquecimento Global/prevenção & controle , Temperatura
2.
Nature ; 604(7905): 304-309, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418633

RESUMO

Over the last five years prior to the Glasgow Climate Pact1, 154 Parties have submitted new or updated 2030 mitigation goals in their nationally determined contributions and 76 have put forward longer-term pledges. Quantifications of the pledges before the 2021 United Nations Climate Change Conference (COP26) suggested a less than 50 per cent chance of keeping warming below 2 degrees Celsius2-5. Here we show that warming can be kept just below 2 degrees Celsius if all conditional and unconditional pledges are implemented in full and on time. Peak warming could be limited to 1.9-2.0 degrees Celsius (5%-95% range 1.4-2.8 °C) in the full implementation case-building on a probabilistic characterization of Earth system uncertainties in line with the Working Group I contribution to the Sixth Assessment Report6 of the Intergovernmental Panel on Climate Change (IPCC). We retrospectively project twenty-first-century warming to show how the aggregate level of ambition changed from 2015 to 2021. Our results rely on the extrapolation of time-limited targets beyond 2030 or 2050, characteristics of the IPCC 1.5 °C Special Report (SR1.5) scenario database7 and the full implementation of pledges. More pessimistic assumptions on these factors would lead to higher temperature projections. A second, independent emissions modelling framework projected peak warming of 1.8 degrees Celsius, supporting the finding that realized pledges could limit warming to just below 2 degrees Celsius. Limiting warming not only to 'just below' but to 'well below' 2 degrees Celsius or 1.5 degrees Celsius urgently requires policies and actions to bring about steep emission reductions this decade, aligned with mid-century global net-zero CO2 emissions.


Assuntos
Política Ambiental , Aquecimento Global , Cooperação Internacional , Temperatura , Planeta Terra , Política Ambiental/legislação & jurisprudência , Aquecimento Global/legislação & jurisprudência , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , História do Século XXI , Cooperação Internacional/legislação & jurisprudência , Paris , Estudos Retrospectivos , Fatores de Tempo , Nações Unidas/legislação & jurisprudência
4.
Proc Natl Acad Sci U S A ; 116(47): 23487-23492, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685608

RESUMO

The main contributors to sea-level rise (oceans, glaciers, and ice sheets) respond to climate change on timescales ranging from decades to millennia. A focus on the 21st century thus fails to provide a complete picture of the consequences of anthropogenic greenhouse gas emissions on future sea-level rise and its long-term impacts. Here we identify the committed global mean sea-level rise until 2300 from historical emissions since 1750 and the currently pledged National Determined Contributions (NDC) under the Paris Agreement until 2030. Our results indicate that greenhouse gas emissions over this 280-y period result in about 1 m of committed global mean sea-level rise by 2300, with the NDC emissions from 2016 to 2030 corresponding to around 20 cm or 1/5 of that commitment. We also find that 26 cm (12 cm) of the projected sea-level-rise commitment in 2300 can be attributed to emissions from the top 5 emitting countries (China, United States of America, European Union, India, and Russia) over the 1991-2030 (2016-2030) period. Our findings demonstrate that global and individual country emissions over the first decades of the 21st century alone will cause substantial long-term sea-level rise.

5.
Nature ; 573(7774): 357-363, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31534246

RESUMO

To understand how global warming can be kept well below 2 degrees Celsius and even 1.5 degrees Celsius, climate policy uses scenarios that describe how society could reduce its greenhouse gas emissions. However, current scenarios have a key weakness: they typically focus on reaching specific climate goals in 2100. This choice may encourage risky pathways that delay action, reach higher-than-acceptable mid-century warming, and rely on net removal of carbon dioxide thereafter to undo their initial shortfall in reductions of emissions. Here we draw on insights from physical science to propose a scenario framework that focuses on capping global warming at a specific maximum level with either temperature stabilization or reversal thereafter. The ambition of climate action until carbon neutrality determines peak warming, and can be followed by a variety of long-term states with different sustainability implications. The approach proposed here closely mirrors the intentions of the United Nations Paris Agreement, and makes questions of intergenerational equity into explicit design choices.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Temperatura , Objetivos , Nações Unidas
6.
Nat Commun ; 9(1): 4810, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446653

RESUMO

Under the bottom-up architecture of the Paris Agreement, countries pledge Nationally Determined Contributions (NDCs). Current NDCs individually align, at best, with divergent concepts of equity and are collectively inconsistent with the Paris Agreement. We show that the global 2030-emissions of NDCs match the sum of each country adopting the least-stringent of five effort-sharing allocations of a well-below 2 °C-scenario. Extending such a self-interested bottom-up aggregation of equity might lead to a median 2100-warming of 2.3 °C. Tightening the warming goal of each country's effort-sharing approach to aspirational levels of 1.1 °C and 1.3 °C could achieve the 1.5 °C and well-below 2 °C-thresholds, respectively. This new hybrid allocation reconciles the bottom-up nature of the Paris Agreement with its top-down warming thresholds and provides a temperature metric to assess NDCs. When taken as benchmark by other countries, the NDCs of India, the EU, the USA and China lead to 2.6 °C, 3.2 °C, 4 °C and over 5.1 °C warmings, respectively.

7.
Nat Commun ; 8: 15748, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28585924

RESUMO

The UN Paris Agreement puts in place a legally binding mechanism to increase mitigation action over time. Countries put forward pledges called nationally determined contributions (NDC) whose impact is assessed in global stocktaking exercises. Subsequently, actions can then be strengthened in light of the Paris climate objective: limiting global mean temperature increase to well below 2 °C and pursuing efforts to limit it further to 1.5 °C. However, pledged actions are currently described ambiguously and this complicates the global stocktaking exercise. Here, we systematically explore possible interpretations of NDC assumptions, and show that this results in estimated emissions for 2030 ranging from 47 to 63 GtCO2e yr-1. We show that this uncertainty has critical implications for the feasibility and cost to limit warming well below 2 °C and further to 1.5 °C. Countries are currently working towards clarifying the modalities of future NDCs. We identify salient avenues to reduce the overall uncertainty by about 10 percentage points through simple, technical clarifications regarding energy accounting rules. Remaining uncertainties depend to a large extent on politically valid choices about how NDCs are expressed, and therefore raise the importance of a thorough and robust process that keeps track of where emissions are heading over time.

9.
Nature ; 534(7609): 631-9, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27357792

RESUMO

The Paris climate agreement aims at holding global warming to well below 2 degrees Celsius and to "pursue efforts" to limit it to 1.5 degrees Celsius. To accomplish this, countries have submitted Intended Nationally Determined Contributions (INDCs) outlining their post-2020 climate action. Here we assess the effect of current INDCs on reducing aggregate greenhouse gas emissions, its implications for achieving the temperature objective of the Paris climate agreement, and potential options for overachievement. The INDCs collectively lower greenhouse gas emissions compared to where current policies stand, but still imply a median warming of 2.6-3.1 degrees Celsius by 2100. More can be achieved, because the agreement stipulates that targets for reducing greenhouse gas emissions are strengthened over time, both in ambition and scope. Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.


Assuntos
Política Ambiental/legislação & jurisprudência , Política Ambiental/tendências , Aquecimento Global/legislação & jurisprudência , Aquecimento Global/prevenção & controle , Objetivos , Cooperação Internacional/legislação & jurisprudência , Temperatura , Dióxido de Carbono/análise , Fatores de Confusão Epidemiológicos , Efeito Estufa/legislação & jurisprudência , Efeito Estufa/prevenção & controle , Paris , Fatores de Tempo , Incerteza
10.
Proc Natl Acad Sci U S A ; 111(46): 16325-30, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368182

RESUMO

Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2-SLCF linkage was often disregarded in long-term projections of earlier studies. Here we explicitly account for CO2-SLCF linkages and show that the short- and long-term climate effects of many SLCF measures consistently become smaller in scenarios that keep warming to below 2 °C relative to preindustrial levels. Although long-term mitigation of methane and hydrofluorocarbons are integral parts of 2 °C scenarios, early action on these species mainly influences near-term temperatures and brings small benefits for limiting maximum warming relative to comparable reductions taking place later. Furthermore, we find that maximum 21st-century warming in 2 °C-consistent scenarios is largely unaffected by additional black-carbon-related measures because key emission sources are already phased-out through CO2 mitigation. Our study demonstrates the importance of coherently considering CO2-SLCF coevolutions. Failing to do so leads to strongly and consistently overestimating the effect of SLCF measures in climate stabilization scenarios. Our results reinforce that SLCF measures are to be considered complementary rather than a substitute for early and stringent CO2 mitigation. Near-term SLCF measures do not allow for more time for CO2 mitigation. We disentangle and resolve the distinct benefits across different species and therewith facilitate an integrated strategy for mitigating both short and long-term climate change.

11.
Nature ; 493(7430): 79-83, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23282364

RESUMO

For more than a decade, the target of keeping global warming below 2 °C has been a key focus of the international climate debate. In response, the scientific community has published a number of scenario studies that estimate the costs of achieving such a target. Producing these estimates remains a challenge, particularly because of relatively well known, but poorly quantified, uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on the one hand, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other hand, has spent years improving its understanding of the geophysical response of the Earth system to emissions of greenhouse gases. This geophysical response remains a key uncertainty in the cost of mitigation scenarios but has been integrated with assessments of other uncertainties in only a rudimentary manner, that is, for equilibrium conditions. Here we bridge this gap between the two research communities by generating distributions of the costs associated with limiting transient global temperature increase to below specific values, taking into account uncertainties in four factors: geophysical, technological, social and political. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by geophysical uncertainties, social factors influencing future energy demand and, lastly, technological uncertainties surrounding the availability of greenhouse gas mitigation options. Our information on temperature risk and mitigation costs provides crucial information for policy-making, because it clarifies the relative importance of mitigation costs, energy demand and the timing of global action in reducing the risk of exceeding a global temperature increase of 2 °C, or other limits such as 3 °C or 1.5 °C, across a wide range of scenarios.


Assuntos
Conservação de Recursos Energéticos/métodos , Conservação de Recursos Energéticos/tendências , Aquecimento Global/prevenção & controle , Probabilidade , Temperatura , Aquecimento Global/economia , Modelos Teóricos , Política , Incerteza
13.
Nature ; 458(7242): 1158-62, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19407799

RESUMO

More than 100 countries have adopted a global warming limit of 2 degrees C or below (relative to pre-industrial levels) as a guiding principle for mitigation efforts to reduce climate change risks, impacts and damages. However, the greenhouse gas (GHG) emissions corresponding to a specified maximum warming are poorly known owing to uncertainties in the carbon cycle and the climate response. Here we provide a comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000-50 period that would limit warming throughout the twenty-first century to below 2 degrees C, based on a combination of published distributions of climate system properties and observational constraints. We show that, for the chosen class of emission scenarios, both cumulative emissions up to 2050 and emission levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed 2 degrees C relative to pre-industrial temperatures. Limiting cumulative CO(2) emissions over 2000-50 to 1,000 Gt CO(2) yields a 25% probability of warming exceeding 2 degrees C-and a limit of 1,440 Gt CO(2) yields a 50% probability-given a representative estimate of the distribution of climate system properties. As known 2000-06 CO(2) emissions were approximately 234 Gt CO(2), less than half the proven economically recoverable oil, gas and coal reserves can still be emitted up to 2050 to achieve such a goal. Recent G8 Communiqués envisage halved global GHG emissions by 2050, for which we estimate a 12-45% probability of exceeding 2 degrees C-assuming 1990 as emission base year and a range of published climate sensitivity distributions. Emissions levels in 2020 are a less robust indicator, but for the scenarios considered, the probability of exceeding 2 degrees C rises to 53-87% if global GHG emissions are still more than 25% above 2000 levels in 2020.


Assuntos
Ecologia/métodos , Efeito Estufa , Modelos Teóricos , Temperatura , Atmosfera/química , Dióxido de Carbono/análise , Previsões , Combustíveis Fósseis/análise , Probabilidade , Incerteza
14.
Nature ; 458(7242): 1163-6, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19407800

RESUMO

Global efforts to mitigate climate change are guided by projections of future temperatures. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO(2)), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 degrees C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9 degrees C.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Carbono/análise , Efeito Estufa , Modelos Teóricos , Temperatura , Benchmarking , Simulação por Computador , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Atividades Humanas/história , Indústrias/história , Fatores de Tempo , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...