Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 18(23): 24140-51, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21164760

RESUMO

We study arrays of silver split-ring resonators operating at around 1.5-µm wavelength coupled to an MBE-grown single 12.7-nm thin InGaAs quantum well separated only 4.8 nm from the wafer surface. The samples are held at liquid-helium temperature and are pumped by intense femtosecond optical pulses at 0.81-µm center wavelength in a pump-probe geometry. We observe much larger relative transmittance changes (up to about 8%) on the split-ring-resonator arrays as compared to the bare quantum well (not more than 1-2%). We also observe a much more rapid temporal decay component of the differential transmittance signal of 15 ps for the case of split-ring resonators coupled to the quantum well compared to the case of the bare quantum well, where we find about 0.7 ns. These observations are ascribed to the evanescent coupling of the split-ring resonators to the quantum-well gain. All experimental results are compared with a recently introduced analytical toy model that accounts for this evanescent coupling, leading to excellent overall qualitative agreement.

2.
Opt Express ; 16(24): 19785-98, 2008 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19030064

RESUMO

We propose, solve, and discuss a simple model for a metamaterial incorporating optical gain: A single bosonic resonance is coupled to a fermionic (inverted) two-level-system resonance via local-field interactions. For given steady-state inversion, this model can be solved analytically, revealing a rich variety of (Fano) absorption/gain lineshapes. We also give an analytic expression for the fixed inversion resulting from gain pinning under steady-state conditions. Furthermore, the dynamic response of the "lasing SPASER", i.e., its relaxation oscillations, can be obtained by simple numerical calculations within the same model. As a result, this toy model can be viewed as the near-field-optical counterpart of the usual LASER rate equations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...