Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543059

RESUMO

Anti-inflammatory agents are widely used for the treatment of inflammatory diseases. Nevertheless, the associated side effects of the available drugs make it necessary to search for new anti-inflammatory drugs. Here, we investigated the anti-inflammatory activity of solidagenone. Initially, we observed that a single dose of 30, 60, or 90 mg/kg of solidagenone did not result in mortality or elicit any discernible signs of toxicity in mice. At the same doses, solidagenone promoted a significant reduction in the migration of neutrophils in an acute peritonitis model and decreased mortality in a lipopolysaccharide-induced endotoxic shock model. Interestingly, treatment with solidagenone conferred a protective effect against leukopenia and thrombocytopenia, hematological disorders commonly observed in sepsis conditions. In addition, treatment with all the doses of solidagenone promoted a significant reduction in nitric oxide, TNF-α, and IL-1ß levels relative to the LPS-stimulated vehicle-treated cultures. Furthermore, gene expression and in silico analyses also supported the modulation of the NF-κB pathway by solidagenone. Finally, in silico pharmacokinetics predictions indicated a favorable drugability profile for solidagenone. Taken together, the findings of the present investigation show that solidagenone exhibits significant anti-inflammatory properties in acute experimental models, potentially through the modulation of the NF-κB signaling pathway.

2.
Vaccines (Basel) ; 12(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38543870

RESUMO

The COVID-19 pandemic and the consequent emergence of new SARS-CoV-2 variants of concern necessitates the determination of populational serum potency against the virus. Here, we standardized and validated an imaging-based method to quantify neutralizing antibodies against lentiviral particles expressing the spike glycoprotein (pseudovirus). This method was found to efficiently quantify viral titers based on ZsGreen-positive cells and detect changes in human serum neutralization capacity induced by vaccination with up to two doses of CoronaVac, Comirnaty, or Covishield vaccines. The imaging-based protocol was also used to quantify serum potency against pseudoviruses expressing spikes from Delta, Omicron BA.1.1.529, and BA.4/5. Our results revealed increases in serum potency after one and two doses of the vaccines evaluated and demonstrated that Delta and Omicron variants escape from antibody neutralization. The method presented herein represents a valuable tool for the screening of antibodies and small molecules capable of blocking viral entry and could be used to evaluate humoral immunity developed by different populations and for vaccine development.

3.
Heliyon ; 10(4): e25539, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370238

RESUMO

Immune imprinting is now evident in COVID-19 vaccinated people. This phenomenon may impair the development of effective neutralizing antibodies against variants of concern (VoCs), mainly Omicron and its subvariants. Consequently, the boost doses with bivalent vaccines have not shown a significant gain of function regarding the neutralization of Omicron. The approach to design COVID-19 vaccines must be revised to improve the effectiveness against VoCs. Here, we took advantage of the self-amplifying characteristic of RepRNA and developed a polyvalent formulation composed of mRNA from five VoCs. LION/RepRNA Polyvalent induced neutralizing antibodies in mice previously immunized with LION/RepRNA D614G and reduced the imprinted phenotype associated with low neutralization capacity of Omicron B.1.1.529 pseudoviruses. The polyvalent vaccine can be a strategy to handle the low neutralization of Omicron VoC, despite booster doses with either monovalent or bivalent vaccines.

4.
Molecules ; 28(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836650

RESUMO

It is estimated that 250 million people worldwide are affected by schistosomiasis. Disease transmission is related to the poor sanitation and hygiene habits that affect residents of impoverished regions in tropical and subtropical countries. The main species responsible for causing disease in humans are Schistosoma Mansoni, S. japonicum, and S. haematobium, each with different geographic distributions. Praziquantel is the drug predominantly used to treat this disease, which offers low effectiveness against immature and juvenile parasite forms. In addition, reports of drug resistance prompt the development of novel therapeutic approaches. Natural products represent an important source of new compounds, especially those obtained from plant sources. This review compiles data from several in vitro and in vivo studies evaluating various compounds and essential oils derived from plants with cercaricidal and molluscicidal activities against both juvenile and adult forms of the parasite. Finally, this review provides an important discussion on recent advances in molecular and computational tools deemed fundamental for more rapid and effective screening of new compounds, allowing for the optimization of time and resources.


Assuntos
Anti-Helmínticos , Produtos Biológicos , Esquistossomose , Humanos , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Schistosoma haematobium , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Esquistossomose/tratamento farmacológico , Esquistossomose/parasitologia , Praziquantel/farmacologia , Schistosoma mansoni
5.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500436

RESUMO

Immunomodulatory agents are widely used for the treatment of immune-mediated diseases, but the range of side effects of the available drugs makes necessary the search for new immunomodulatory drugs. Here, we investigated the immunomodulatory activity of new ferrocenyl-N-acyl hydrazones derivatives (SintMed(141−156). The evaluated N-acyl hydrazones did not show cytotoxicity at the tested concentrations, presenting CC50 values greater than 50 µM. In addition, all ferrocenyl-N-acyl hydrazones modulated nitrite production in immortalized macrophages, showing inhibition values between 14.4% and 74.2%. By presenting a better activity profile, the ferrocenyl-N-acyl hydrazones SintMed149 and SintMed150 also had their cytotoxicity and anti-inflammatory effect evaluated in cultures of peritoneal macrophages. The molecules were not cytotoxic at any of the concentrations tested in peritoneal macrophages and were able to significantly reduce (p < 0.05) the production of nitrite, TNF-α, and IL-1ß. Interestingly, both molecules significantly reduced the production of IL-2 and IFN-γ in cultured splenocytes activated with concanavalin A. Moreover, SintMed150 did not show signs of acute toxicity in animals treated with 50 or 100 mg/kg. Finally, we observed that ferrocenyl-N-acyl hydrazone SintMed150 at 100 mg/kg reduced the migration of neutrophils (44.6%) in an acute peritonitis model and increased animal survival by 20% in an LPS-induced endotoxic shock model. These findings suggest that such compounds have therapeutic potential to be used to treat diseases of inflammatory origin.


Assuntos
Hidrazonas , Agentes de Imunomodulação , Animais , Hidrazonas/química , Metalocenos , Compostos Ferrosos/farmacologia , Compostos Ferrosos/química , Lipopolissacarídeos
6.
Front Pharmacol ; 13: 883857, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677426

RESUMO

Inflammatory diseases have a high prevalence and has become of great interest due to the increase in life expectancy and the costs to the health care system worldwide. Chronic diseases require long-term treatment frequently using corticosteroids and non-steroidal anti-inflammatory drugs, which are associated with diverse side effects and risk of toxicity. Betulinic acid, a lupane-type pentacyclic triterpene, is a potential lead compound for the development of new anti-inflammatory treatments, and a large number of derivatives have been produced and tested. The potential of betulinic acid and its derivatives has been shown in a number of pre-clinical studies using different experimental models. Moreover, several molecular mechanisms of action have also been described. Here we reviewed the potential use of betulinic acid as a promissory lead compound with anti-inflammatory activity and the perspectives for its use in the treatment of inflammatory conditions.

7.
Front Pharmacol ; 13: 864714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450054

RESUMO

Physalins, or 16,24-cyclo-13,14-seco steroids, are compounds belonging to the class of withanolides that can be found in plants of Solanaceae family, mainly in species belonging to the genus Physalis spp., which are annual herbaceous plants widely distributed in tropical and subtropical regions of the world. Physalins are versatile molecules that act in several cell signaling pathways and activate different mechanisms of cell death or immunomodulation. A number of studies have shown a variety of actions of these compounds, including anticancer, anti-inflammatory, antiparasitic, antimicrobial, antinociceptive, and antiviral activities. Here we reviewed the main findings related to the anticancer, immunomodulatory, and antiparasitic activities of physalins and its mechanisms of action, highlighting the \challenges and future directions in the pharmacological application of physalins.

8.
Basic Clin Pharmacol Toxicol ; 130(1): 44-55, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34634189

RESUMO

Solidagenone is the main active constituent present in Solidago chilensis Meyen which is used in folk medicine to treat pain and inflammatory diseases. This study aimed to evaluate the anti-inflammatory activity of solidagenone in vitro and in a model of allergic airway inflammation. In vitro studies were performed in activated macrophages and lymphocytes. BALB/c mice were sensitized and challenged with ovalbumin and treated with solidagenone orally (30 or 90 mg/kg body weight) or dexamethasone, as a positive control in our in vivo analysis. Supernatant concentrations of nitrite, TNF and IL-1ß, as well as gene expression of pro-inflammatory mediators in macrophages cultures, were reduced after solidagenone treatment, without affecting macrophages viability. Besides, solidagenone significantly decreased T cell proliferation and secretion of IFNγ and IL-2. Th2 cytokine concentrations and inflammatory cell counts, especially eosinophils, in bronchoalveolar lavage fluid were reduced in mice treated with solidagenone. Histopathological evaluation of lung tissue was performed, and morphometrical analyses demonstrated reduction of cellular infiltration and mucus hypersecretion. Altogether, solidagenone presented anti-inflammatory activity in vitro and in vivo in the OVA-induced airway inflammation model, suggesting its promising pharmacological use as an anti-inflammatory agent for allergic hypersensitivity.


Assuntos
Anti-Inflamatórios/farmacologia , Furanos/farmacologia , Inflamação/tratamento farmacológico , Naftalenos/farmacologia , Solidago/química , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Líquido da Lavagem Broncoalveolar , Dexametasona/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Furanos/administração & dosagem , Furanos/isolamento & purificação , Mediadores da Inflamação/metabolismo , Linfócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Naftalenos/administração & dosagem , Naftalenos/isolamento & purificação , Ovalbumina
9.
Front Cell Infect Microbiol ; 11: 765879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869068

RESUMO

Chagas disease is a parasitic infection caused by the intracellular protozoan Trypanosoma cruzi. Chronic Chagas cardiomyopathy (CCC) is the most severe manifestation of the disease, developed by approximately 20-40% of patients and characterized by occurrence of arrhythmias, heart failure and death. Despite having more than 100 years of discovery, Chagas disease remains without an effective treatment, especially for patients with CCC. Since the pathogenesis of CCC depends on a parasite-driven systemic inflammatory profile that leads to cardiac tissue damage, the use of immunomodulators has become a rational alternative for the treatment of CCC. In this context, different classes of drugs, cell therapies with dendritic cells or stem cells and gene therapy have shown potential to modulate systemic inflammation and myocarditis in CCC models. Based on that, the present review provides an overview of current reports regarding the use of immunomodulatory agents in treatment of CCC, bringing the challenges and future directions in this field.


Assuntos
Cardiomiopatia Chagásica , Doença de Chagas , Trypanosoma cruzi , Cardiomiopatia Chagásica/terapia , Doença de Chagas/tratamento farmacológico , Doença Crônica , Humanos , Agentes de Imunomodulação , Imunomodulação
10.
Molecules ; 26(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834016

RESUMO

Quercetin (Q) is a bioflavonoid with biological potential; however, poor solubility in water, extensive enzymatic metabolism and a reduced bioavailability limit its biopharmacological use. The aim of this study was to perform structural modification in Q by acetylation, thus, obtaining the quercetin pentaacetate (Q5) analogue, in order to investigate the biological potentials (antioxidant, antileishmania, anti-inflammatory and cytotoxicity activities) in cell cultures. Q5 was characterized by FTIR, 1H and 13C NMR spectra. The antioxidant potential was evaluated against the radical ABTS•+. The anti-inflammatory potential was evaluated by measuring the pro-inflammatory cytokine tumor necrosis factor (TNF) and the production of nitric oxide (NO) in peritoneal macrophages from BALB/c mice. Cytotoxicity tests were performed using the AlamarBlue method in cancer cells HepG2 (human hepatocarcinoma), HL-60 (promyelocytic leukemia) and MCR-5 (healthy human lung fibroblasts) as well as the MTT method for C6 cell cultures (rat glioma). Q and Q5 showed antioxidant activity of 29% and 18%, respectively, which is justified by the replacement of hydroxyls by acetyl groups. Q and Q5 showed concentration-dependent reductions in NO and TNF production (p < 0.05); Q and Q5 showed higher activity at concentrations > 40µM when compared to dexamethasone (20 µM). For the HL-60 lineage, Q5 demonstrated selectivity, inducing death in cancer cells, when compared to the healthy cell line MRC-5 (IC50 > 80 µM). Finally, the cytotoxic superiority of Q5 was verified (IC50 = 11 µM), which, at 50 µM for 24 h, induced changes in the morphology of C6 glioma cells characterized by a round body shape (not yet reported in the literature). The analogue Q5 had potential biological effects and may be promising for further investigations against other cell cultures, particularly neural ones.


Assuntos
Anti-Inflamatórios , Antineoplásicos , Antioxidantes , Antiprotozoários , Quercetina/análogos & derivados , Acetilação , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Células HL-60 , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Quercetina/síntese química , Quercetina/química , Quercetina/farmacologia
11.
Rev Bras Med Trab ; 19(2): 151-156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603410

RESUMO

INTRODUCTION: Burnout syndrome is a phenomenon characterized by chronic emotional exhaustion that can lead to physical, psychological, and social consequences. Because they need to support themselves financially, university professors have accepted increasingly longer working hours and accumulated duties, resulting in greater exposure to factors that may induce the onset of mental disorders such as burnout syndrome. OBJECTIVES: This cross-sectional epidemiological study aimed to determine the prevalence of burnout syndrome and predisposing factors in university professors working in Salvador, Brazil. METHODS: The sample consisted of 210 participants. The Maslach Burnout Inventory adapted for teachers, the gold standard for detecting burnout syndrome, and a sociodemographic questionnaire were administered to identify variables that may influence the development of burnout. Then, the data were compiled in Excel and analyzed with the aid of GraphPad Prism. RESULTS: The prevalence of burnout was 41% (n = 86). A stratified data analysis showed that being under 40 years of age, being single, being childless, teaching natural sciences, and working at several institutions are risk factors for developing burnout syndrome. CONCLUSIONS: The prevalence of burnout syndrome in university professors was 41%. Professors who were young, single, childless, taught natural sciences, and worked at more than one institution were found to be more likely to develop burnout syndrome.

12.
Stem Cells Int ; 2021: 2642807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434238

RESUMO

Chagas disease is caused by Trypanosoma cruzi infection and remains a relevant cause of chronic heart failure in Latin America. The pharmacological arsenal for Chagas disease is limited, and the available anti-T. cruzi drugs are not effective when administered during the chronic phase. Cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) have the potential to accelerate the process of drug discovery for Chagas disease, through predictive preclinical assays in target human cells. Here, we aimed to establish a novel high-content screening- (HCS-) based method using hiPSC-CMs to simultaneously evaluate anti-T. cruzi activity and cardiotoxicity of chemical compounds. To provide proof-of-concept data, the reference drug benznidazole and three compounds with known anti-T. cruzi activity (a betulinic acid derivative named BA5 and two thiazolidinone compounds named GT5A and GT5B) were evaluated in the assay. hiPSC-CMs were infected with T. cruzi and incubated for 48 h with serial dilutions of the compounds for determination of EC50 and CC50 values. Automated multiparametric analyses were performed using an automated high-content imaging system. Sublethal toxicity measurements were evaluated through morphological measurements related to the integrity of the cytoskeleton by phalloidin staining, nuclear score by Hoechst 33342 staining, mitochondria score following MitoTracker staining, and quantification of NT-pro-BNP, a peptide released upon mechanical myocardial stress. The compounds showed EC50 values for anti-T. cruzi activity similar to those previously described for other cell types, and GT5B showed a pronounced trypanocidal activity in hiPSC-CMs. Sublethal changes in cytoskeletal and nucleus scores correlated with NT-pro-BNP levels in the culture supernatant. Mitochondrial score changes were associated with increased cytotoxicity. The assay was feasible and allowed rapid assessment of anti-T. cruzi action of the compounds, in addition to cardiotoxicity parameters. The utilization of hiPSC-CMs in the drug development workflow for Chagas disease may help in the identification of novel compounds.

13.
Biology (Basel) ; 10(6)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204772

RESUMO

O3 dissolved in water (or ozonized water) has been considered a potent antimicrobial agent, and this study aimed to test this through microbiological and in vitro assays. The stability of O3 was accessed following modifications of the physicochemical parameters of water, such as the temperature and pH, with or without buffering. Three concentrations of O3 (0.4, 0.6, and 0.8 ppm) dissolved in water were tested against different microorganisms, and an analysis of the cytotoxic effects was also conducted using the human ear fibroblast cell line (Hfib). Under the physicochemical conditions of 4 °C and pH 5, O3 remained the most stable and concentrated compared to pH 7 and water at 25 °C. Exposure to ozonized water resulted in high mortality rates for Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis, and Candida albicans. Scanning electron micrograph images indicate that the effects on osmotic stability due to cell wall lysis might be one of the killing mechanisms of ozonized water. The biocidal agent was biocompatible and presented no cytotoxic effect against Hfib cells. Therefore, due to its cytocompatibility and biocidal action, ozonized water can be considered a viable alternative for microbial control, being possible, for example, its use in disinfection processes.

14.
Planta Med ; 87(1-02): 160-168, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32937664

RESUMO

The need for new immunomodulatory drugs is due to the side effects associated with the prolonged use of the currently used immunomodulatory drugs. In this context, the present work aimed to investigate the immunomodulatory effect of an ethanolic concentrated extract from Physalis angulata. The cytotoxicity of samples was determined using peritoneal macrophages though the Alamar Blue assay. The immunomodulatory activity of the ethanolic extract from P. angulata on activated macrophages was determined by measurement of nitrite and cytokine production. The immunosuppressive effects of the ethanolic extract from P. angulata was evaluated on lymphocyte proliferation and cytokine production. The effects of the extract on cell cycle progression and cell death on lymphocytes were evaluated by flow cytometry. Lastly, the ethanolic extract from P. angulata was tested in vivo in toxicological tests and in models of peritonitis and delayed-type hypersensitivity response. The ethanolic extract from P. angulata decreased nitrite, interleukin-6, interleukin-12, and TNF-α production by activated macrophages without affecting the cell viability. In addition, the ethanolic extract from P. angulata inhibited lymphoproliferation and the secretion of interleukin-2, interleukin-6, and IFN-γ, and increased interleukin-4 secretion by activated splenocytes. Flow cytometry analysis in lymphocyte cultures showed that treatment with the ethanolic extract from P. angulata induces cell cycle arrest in the G1 phase followed by cell death by apoptosis. Moreover, mice treated with the extract from P. angulata at 100 or 200 mg/kg did not show signs of toxicity or alterations in serum components. Finally, the ethanolic extract from P. angulata significantly reduced neutrophil migration and reduced paw edema in bovine serum albumin-induced the delayed-type hypersensitivity response model. Our results demonstrate the potential of the ethanolic extract of P. angulata as an alternative for the treatment of immune-inflammatory diseases.


Assuntos
Physalis , Animais , Etanol , Macrófagos , Macrófagos Peritoneais , Camundongos , Extratos Vegetais/farmacologia
15.
Eur J Pharmacol ; 887: 173525, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889064

RESUMO

Coumarins exhibit a wide variety of biological effects, including activities in the cardiovascular system and the aim of this study was to evaluate the vascular therapeutic potential of 7-Hydroxicoumarin (7-HC). The vascular effects induced by 7-HC (0.001 µM-300 µM), were investigated by in vitro approaches using isometric tension measurements in rat superior mesenteric arteries and by in silico assays using Ligand-based analysis. Our results suggest that the vasorelaxant effect of 7-HC seems to rely on potassium channels, notably through large conductance Ca2+-activated K+ (BKCa) channels activation. In fact, 7-HC (300 µM) significantly reduced CaCl2-induced contraction as well as the reduction of intracellular calcium mobilization. However, the relaxation induced by 7-HC was independent of store-operated calcium entry (SOCE). Moreover, in silico analysis suggests that potassium channels have a common binding pocket, where 7-HC may bind and hint that its binding profile is more similar to quinine's than verapamil's. These results are compatible with the inhibition of Ca2+ release from intracellular stores, which is prompted by phenylephrine and caffeine. Taken together, these results demonstrate a therapeutic potential of 7-HC on the cardiovascular system, making it a promising lead compound for the development of drugs useful in the treatment of cardiovascular diseases.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/agonistas , Artérias Mesentéricas/efeitos dos fármacos , Umbeliferonas/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Sinalização do Cálcio/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Masculino , Artérias Mesentéricas/fisiologia , Técnicas de Cultura de Órgãos , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Vasodilatação/fisiologia
16.
Front Cell Dev Biol ; 8: 326, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478072

RESUMO

Mesenchymal stem/stromal cells (MSCs) are stromal-derived non-hematopoietic progenitor cells that reside in and can be expanded from various tissues sources of adult and neonatal origin, such as the bone marrow, umbilical cord, umbilical cord blood, adipose tissue, amniotic fluid, placenta, dental pulp and skin. The discovery of the immunosuppressing action of MSCs on T cells has opened new perspectives for their use as a therapeutic agent for immune-mediated disorders, including allergies. Atopic dermatitis (AD), a chronic and relapsing skin disorder that affects up to 20% of children and up to 3% of adults worldwide, is characterized by pruritic eczematous lesions, impaired cutaneous barrier function, Th2 type immune hyperactivation and, frequently, elevation of serum immunoglobulin E levels. Although, in the dermatology field, the application of MSCs as a therapeutic agent was initiated using the concept of cell replacement for skin defects and wound healing, accumulating evidence have shown that MSC-mediated immunomodulation can be applicable to the treatment of inflammatory/allergic skin disorders. Here we reviewed the pre-clinical and clinical studies and possible biological mechanisms of MSCs as a therapeutic tool for the treatment of atopic dermatitis.

17.
Fitoterapia ; 145: 104632, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32446709

RESUMO

This current study presents the phytochemical analysis of Croton velutinus, describing phenylpropanoids obtained from this species. The fractionation of the roots hexane extract led to the isolation of four new phenylpropanoids derivatives, velutines A-D (1-4) and three known (5-7). Their structures were established based on spectroscopic (1D-2D NMR; HRMS and IR) analysis. Cytotoxic, trypanocidal and anti-inflammatory activities of compounds 1-7 were evaluated. Only compounds 2 and 5 showed cytotoxic activity against cancer cell lines (B16F10, HL-60, HCT116, MCF-7 and HepG2), with IC50 values ranging from 6.8 to 18.3 µM and 11.1 to 18.3 µM, respectively. Compounds 2 and 5 also showed trypanocidal activity against bloodstream trypomastigotes with EC50 values of 9.0 and 9.58 µM, respectively. Finally, the anti-inflammatory potential of these compounds was evaluated on cultures of activated macrophages. All compounds exhibited concentration-dependent suppressive activity on the production of nitrite and IL-1ß by macrophages stimulated with LPS and IFN-γ. These results indicate phenylpropanoids esters (2 and 5) from C. velutinus as promising cytotoxic, trypanocidal and anti-inflammatory candidates that warrants further studies.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antiprotozoários/farmacologia , Croton/química , Fenilpropionatos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Antiprotozoários/isolamento & purificação , Brasil , Linhagem Celular Tumoral , Humanos , Macrófagos/química , Camundongos , Estrutura Molecular , Fenilpropionatos/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Raízes de Plantas/química , Trypanosoma cruzi/efeitos dos fármacos
18.
Front Immunol ; 11: 488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318058

RESUMO

Chronic Chagas disease cardiomyopathy (CCC) is the most frequent and severe form of this parasitic disease. CCC is caused by a progressive inflammation in the heart, resulting in alterations that can culminate in heart failure and death. The use of dendritic cells (DCs) appears as an option for the development of treatments due to their important role in regulating immune responses. Here, we investigated whether tolerogenic cells (tDCs) could interfere with the progression of CCC in an experimental model of Chagas disease. The tDCs were generated and characterized as CD11b+ CD11c+ cells, low expression of MHC-II, CD86, CD80, and CD40, and increased expression of PD-L. These cells produced low levels of IL-6 and IL-12p70 and higher levels of IL-10, compared to mature DCs (mDCs). Interestingly, tDCs inhibited lymphoproliferation and markedly increased the population of FoxP3+ Treg cells in vitro, compared to mature DCs. In a mouse model of CCC, treatment with tDCs reduced heart inflammation and fibrosis. Furthermore, tDCs treatment reduced the gene expression of pro-inflammatory cytokines (Ifng and Il12) and of genes related to cardiac remodeling (Col1a2 and Lgals3), while increasing the gene expression of IL-10. Finally, administration of tDCs, increased the percentage of Treg cells in the hearts and spleens of chagasic mice. Ours results show that tolerogenic dendritic cells have therapeutic potential on CCC, inhibiting disease progression.


Assuntos
Cardiomiopatia Chagásica/terapia , Doença de Chagas/terapia , Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Miocárdio/patologia , Linfócitos T Reguladores/imunologia , Trypanosoma cruzi/fisiologia , Animais , Apresentação de Antígeno , Células Cultivadas , Cardiomiopatia Chagásica/imunologia , Doença de Chagas/imunologia , Citocinas/metabolismo , Células Dendríticas/transplante , Modelos Animais de Doenças , Fibrose , Humanos , Tolerância Imunológica , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
19.
Int J Pharm ; 576: 118997, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31893542

RESUMO

Cardiovascular diseases (CVD) are the leading cause of death worldwide. Growth factor therapy has emerged as novel therapeutic strategy under investigation for CVD. In this sense, adrenomedullin-2 (ADM-2) has been recently identified as a new angiogenic factor able to regulate the regional blood flow and cardiovascular function. However, the therapeutic value of ADM-2 is limited by its short biological half-life and low plasma stability. Poly (lactic-co-glycolic acid) (PLGA) micro- and nanoparticles have been investigated as growth factor delivery systems for cardiac repair. In this study, we aimed to develop PLGA nanoparticles containing ADM-2 intended for therapeutic angiogenesis. PLGA nanoparticles containing ADM-2 were prepared by a double emulsion modified method, resulting in 300 nm-sized stable particles with zeta potential around - 30 mV. Electron microscopy analysis by SEM and TEM revealed spherical particles with a smooth surface. High encapsulation efficiency was reached (ca.70%), as quantified by ELISA. ADM-2 associated to polymer nanoparticles was also determined by EDS elemental composition analysis, SDS-PAGE and LC-MS/MS for peptide identification. In vitro release assays showed the sustained release of ADM-2 from polymer nanoparticles for 21 days. Cell viability experiments were performed in J774 macrophages and H9c2 cardiomyocyte cells, about which PLGA nanoparticles loaded with ADM-2 did not cause toxicity in the range 0.01-1 mg/ml. Of note, encapsulated ADM-2 significantly induced cell proliferation in EA.hy926 endothelial cells, indicating the ADM-2 bioactivity was preserved after the encapsulation process. Collectively, these results demonstrate the feasibility of using PLGA nanoparticles as delivery systems for the angiogenic peptide ADM-2, which could represent a novel approach for therapeutic angiogenesis in CVD using growth factor therapy.


Assuntos
Indutores da Angiogênese/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos , Células Endoteliais/efeitos dos fármacos , Hormônios Peptídicos/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Indutores da Angiogênese/química , Indutores da Angiogênese/toxicidade , Animais , Linhagem Celular , Preparações de Ação Retardada , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Cinética , Camundongos , Nanopartículas , Hormônios Peptídicos/química , Hormônios Peptídicos/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/toxicidade , Ratos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Solubilidade
20.
Eur J Med Chem ; 180: 191-203, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31306906

RESUMO

Chagas disease is an illness caused by the protozoan parasite Trypanosoma cruzi. The current chemotherapy is based on benznidazole, and, in some countries, Nifurtimox, which is effective in the acute phase of the disease, but its efficacy in the chronic phase remains controversial. It can also cause serious side effects that lead sufferers to abandon treatment. In the present work, is reported the synthesis and trypanocidal activity of new 2-(phenylthio)ethylidene thiosemicarbazones (4-15) and 1,3-thiazoles (16-26). The cyclization of thiosemicarbazones into 1,3-thiazoles presents an improvement in the cytotoxic profile for T. cruzi parasite, denoting selective compounds. Compound 18 was identified as the most promising of all compounds tested, showing an IC50 of 2.6 µM for the trypomastigote form and a non-cytotoxic effect on mouse spleen cells, reaching a selective index of 95.1. Among the 22 compounds tested, six compounds present a better trypanocidal activity, and five compounds have an equipotent activity compared to benznidazole. Flow cytometry and ultrastructural analysis were performed and indicate that compound 18 causes parasite cell death through apoptosis and acts via an autophagic pathway.


Assuntos
Desenho de Fármacos , Tiazóis/farmacologia , Tiossemicarbazonas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Tripanossomicidas/síntese química , Tripanossomicidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...