Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888894

RESUMO

BACKGROUND: Young children and older adults are susceptible for invasive pneumococcal disease (IPD) caused by Streptococcus pneumoniae. Pneumococcal protein-specific antibodies play a protective role against IPD; however, not much is known about the pace of acquisition, maturation, and maintenance of these antibodies throughout life. METHODS: Immunoglobulin G (IgG) and IgA levels, avidity, and/or specificity to the pneumococcal proteome in serum and saliva from healthy young children, adults, and older adults, with known carriage status, were measured by enzyme-linked immunosorbent assay (ELISA) and 2-dimensional western blotting against ΔcpsTIGR4. RESULTS: Eleven-month-old children, the youngest age group tested, had the lowest pneumococcal proteome-specific IgG and IgA levels and avidity in serum and saliva, followed by 24-month-old children and were further elevated in adult groups. Among adult groups, the parents had the highest serum and saliva IgG and IgA antibody levels. In children, antibody levels and avidity correlated with daycare attendance and presence of siblings, posing as proxy for exposure and immunization. Immunodominance patterns slightly varied throughout life. CONCLUSIONS: Humoral immunity against the pneumococcal proteome is acquired through multiple episodes of pneumococcal exposure. Low-level and low-avidity antiproteome antibody profiles in young children may contribute to their IPD susceptibility, while in overall antiproteome antibody-proficient older adults other factors likely play a role.

2.
Mol Cell Proteomics ; 22(6): 100568, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37276839
3.
Sci Rep ; 12(1): 13418, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927283

RESUMO

Mandatory potency testing of Leptospira vaccine batches relies partially on in vivo procedures, requiring large numbers of laboratory animals. Cell-based assays could replace in vivo tests for vaccine quality control if biomarkers indicative of Leptospira vaccine potency are identified. We investigated innate immune responsiveness induced by inactivated L. interrogans serogroups Canicola and Icterohaemorrhagiae, and two bivalent, non-adjuvanted canine Leptospira vaccines containing the same serogroups. First, the transcriptome and proteome analysis of a canine monocyte/macrophage 030-D cell line stimulated with Leptospira strains, and vaccine B revealed more than 900 DEGs and 23 DEPs in common to these three stimuli. Second, comparison of responses induced by vaccine B and vaccine D revealed a large overlap in DEGs and DEPs as well, suggesting potential to identify biomarkers indicative of Leptospira vaccine quality. Because not many common DEPs were identified, we selected seven molecules from the identified DEGs, associated with pathways related to innate immunity, of which CXCL-10, IL-1ß, SAA, and complement C3 showed increased secretion upon stimulation with both Leptospira vaccines. These molecules could be interesting targets for development of biomarker-based assays for Leptospira vaccine quality control in the future. Additionally, this study contributes to the understanding of the mechanisms by which Leptospira vaccines induce innate immune responses in the dog.


Assuntos
Doenças do Cão , Leptospira , Leptospirose , Animais , Vacinas Bacterianas , Biomarcadores , Cães , Imunidade Inata , Leptospirose/prevenção & controle , Leptospirose/veterinária , Proteoma , Células Secretoras de Somatostatina , Transcriptoma , Vacinas Combinadas
4.
Vaccines (Basel) ; 10(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35891242

RESUMO

Vaccines undergo stringent batch-release testing, most often including in-vivo assays for potency. For combination vaccines, such as diphtheria-tetanus-pertussis (DTaP), chemical modification induced by formaldehyde inactivation, as well as adsorption to aluminum-based adjuvants, complicates antigen-specific in-vitro analysis. Here, a mass spectrometric method was developed that allows the identification and quantitation of DTaP antigens in a combination vaccine. Isotopically labeled, antigen-specific internal standard peptides were employed that permitted absolute quantitation of their antigen-derived peptide counterparts and, consequently, the individual antigens. We evaluated the applicability of the method on monovalent non-adjuvanted antigens, on final vaccine lots and on experimental vaccine batches, where certain antigens were omitted from the drug product. Apart from the applicability for final batch release, we demonstrated the suitability of the approach for in-process control monitoring. The peptide quantification method facilitates antigen-specific identification and quantification of combination vaccines in a single assay. This may contribute, as part of the consistency approach, to a reduction in the number of animal tests required for vaccine-batch release.

5.
J Pharm Sci ; 111(4): 982-990, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35090866

RESUMO

Aluminum hydroxide (Al(OH)3) and aluminum phosphate (AlPO4) are widely used adjuvants in human vaccines. However, a rationale to choose one or the other is lacking since the differences between molecular mechanisms of action of these adjuvants are unknown. In the current study, we compared the innate immune response induced by both adjuvants in vitro and in vivo. Proteome analysis of human primary monocytes was used to determine the immunological pathways activated by these adjuvants. Subsequently, analysis of immune cells present at the site of injection and proteome analysis of the muscle tissue revealed the differentially regulated processes related to the innate immune response in vivo. Incubation with Al(OH)3 specifically enhanced the activation of antigen processing and presentation pathways in vitro. In vivo experiments showed that only intramuscular (I.M.) immunization with Al(OH)3 attracted neutrophils, while I.M. immunization with AlPO4 attracted monocytes/macrophages to the site of injection. In addition, only I.M. immunization with Al(OH)3 enhanced the process of hemostasis after 96 hours, possibly related to neutrophilic extracellular trap formation. Both adjuvants differentially regulated various immune system-related processes. The results show that Al(OH)3 and AlPO4 act differently on the innate immune system. We speculate that these different regulations affect the interaction with cells, due to the different physicochemical properties of both adjuvants.


Assuntos
Hidróxido de Alumínio , Proteoma , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Alumínio , Compostos de Alumínio , Hidróxido de Alumínio/farmacologia , Humanos , Imunidade Inata , Fosfatos
6.
Anal Chem ; 93(48): 15832-15839, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34807566

RESUMO

The variable modification of the outer membrane lipopolysaccharide (LPS) in Gram-negative bacteria contributes to bacterial pathogenesis through various mechanisms, including the development of antibiotic resistance and evasion of the immune response of the host. Characterizing the natural structural repertoire of LPS is challenging due to the high heterogeneity, branched architecture, and strong amphipathic character of these glycolipids. To address this problem, we have developed a method enabling the separation and structural profiling of complex intact LPS mixtures by using nanoflow reversed-phase high-performance liquid chromatography (nLC) coupled to electrospray ionization Fourier transform mass spectrometry (ESI-FT-MSn). Nanogram quantities of rough-type LPS mixtures from Neisseria meningitidis could be separated and analyzed by nLC-ESI-FT-MS. Furthermore, the method enabled the analysis of highly heterogeneous smooth (S)-type LPS from pathogenic enteric bacteria such as Salmonella enterica serotype Typhimurium and Escherichia coli serotype O111:B4. High-resolution, accurate mass spectra of intact LPS containing various lengths of the O-specific polysaccharide in the range of 3 and 15 kDa were obtained. In addition, MS/MS experiments with collision-induced dissociation of intact LPS provided detailed information on the composition of oligo/polysaccharides and lipid A domains of single S-type LPS species. The structural heterogeneity of S-type LPS was characterized by unprecedented details. Our results demonstrate that nLC-ESI-FT-MSn is an attractive strategy for the structural profiling of small quantities of complex bacterial LPS mixtures in their intact form.


Assuntos
Lipopolissacarídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Lipídeo A/análise , Lipopolissacarídeos/análise , Espectrometria de Massas por Ionização por Electrospray
7.
Sci Rep ; 11(1): 13664, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211021

RESUMO

Mumps is nowadays re-emerging despite vaccination. The contribution of T cell immunity to protection against mumps has not been clearly defined. Previously, we described a set of 41 peptides that were eluted from human leukocyte antigen (HLA) class I molecules of mumps virus (MuV)-infected cells. Here, we confirmed immunogenicity of five novel HLA-B*07:02- and HLA-A*01:01-restricted MuV T cell epitopes from this set of peptides. High frequencies of T cells against these five MuV epitopes could be detected ex vivo in all tested mumps patients. Moreover, these epitope-specific T cells derived from mumps patients displayed strong cytotoxic activity. In contrast, only marginal T cell responses against these novel MuV epitopes could be detected in recently vaccinated persons, corroborating earlier findings. Identifying which MuV epitopes are dominantly targeted in the mumps-specific CD8+ T- response is an important step towards better understanding in the discrepancies between natural infection or vaccination-induced cell-mediated immune protection.


Assuntos
Epitopos de Linfócito T/imunologia , Vírus da Caxumba/imunologia , Caxumba/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto , Antígenos HLA-A/imunologia , Antígenos HLA-B/imunologia , Humanos , Caxumba/prevenção & controle , Vacinação , Adulto Jovem
8.
Vaccines (Basel) ; 9(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202193

RESUMO

Nowadays, mumps is re-emerging in highly vaccinated populations. Waning of vaccine-induced immunity plays a role, but antigenic differences between vaccine and mumps outbreak strains could also contribute to reduced vaccine effectiveness. CD8+ T cells play a critical role in immunity to viruses. However, limited data are available about sequence variability in CD8+ T cell epitope regions of mumps virus (MuV) proteins. Recently, the first set of naturally presented human leukocyte antigen Class I (HLA-I) epitopes of MuV was identified by us. In the present study, sequences of 40 CD8+ T cell epitope candidates, including previously and newly identified, obtained from Jeryl-Lynn mumps vaccine strains were compared with genomes from 462 circulating MuV strains. In 31 epitope candidates (78%) amino acid differences were detected, and in 17 (43%) of the epitope candidates the corresponding sequences in wild-type strains had reduced predicted HLA-I-binding compared to the vaccine strains. These findings suggest that vaccinated persons may have reduced T cell immunity to circulating mumps viruses due to antigenic differences.

9.
Sci Rep ; 11(1): 12666, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135356

RESUMO

Inactivated poultry vaccines are subject to routine potency testing for batch release, requiring large numbers of animals. The replacement of in vivo tests for cell-based alternatives can be facilitated by the identification of biomarkers for vaccine-induced immune responses. In this study, chicken bone marrow-derived dendritic cells were stimulated with an inactivated vaccine for infectious bronchitis virus and Newcastle disease virus, as well as inactivated infectious bronchitis virus only, and lipopolysaccharides as positive control, or left unstimulated for comparison with the stimulated samples. Next, the cells were lysed and subjected to proteomic analysis. Stimulation with the vaccine resulted in 66 differentially expressed proteins associated with mRNA translation, immune responses, lipid metabolism and the proteasome. For the eight most significantly upregulated proteins, mRNA expression levels were assessed. Markers that showed increased expression at both mRNA and protein levels included PLIN2 and PSMB1. Stimulation with infectious bronchitis virus only resulted in 25 differentially expressed proteins, which were mostly proteins containing Src homology 2 domains. Stimulation with lipopolysaccharides resulted in 118 differentially expressed proteins associated with dendritic cell maturation and antimicrobial activity. This study provides leads to a better understanding of the activation of dendritic cells by an inactivated poultry vaccine, and identified PLIN2 and PSMB1 as potential biomarkers for cell-based potency testing.


Assuntos
Células Dendríticas , Marcadores Genéticos/imunologia , Aves Domésticas/imunologia , Vacinas Virais , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Galinhas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Expressão Gênica/imunologia , Imunidade Inata , Vírus da Bronquite Infecciosa/imunologia , Doença de Newcastle/imunologia , Doença de Newcastle/prevenção & controle , Perilipina-2/imunologia , Perilipina-2/metabolismo , Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/farmacologia , Vacinas Virais/imunologia , Vacinas Virais/farmacologia
10.
J Am Soc Mass Spectrom ; 32(6): 1490-1497, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33983728

RESUMO

Currently, animal tests are being used to confirm the potency and lack of toxicity of toxoid vaccines. In a consistency approach, animal tests could be replaced if production consistency (compared to known good products) can be proven in a panel of in vitro assays. By mimicking the in vivo antigen processing in a simplified in vitro approach, it may be possible to distinguish aberrant products from good products. To demonstrate this, heat-exposed diphtheria toxoid was subjected to partial digestion by cathepsin S (an endoprotease involved in antigen processing), and the peptide formation/degradation kinetics were mapped for various heated toxoids. To overcome the limitations associated with the very large number of samples, we used common reference-based tandem mass tag (TMT) labeling. Instead of using one label per condition with direct comparison between the set of labels, we compared multiple labeled samples to a common reference (a pooled sample containing an aliquot of each condition). In this method, the number of samples is not limited by the number of unique TMT labels. This TMT multiplexing strategy allows for a 15-fold reduction of analysis time while retaining the reliability advantage of TMT labeling over label-free quantification. The formation of the most important peptides could be followed over time and compared among several conditions. The changes in enzymatic degradation kinetics of diphtheria toxoid revealed several suitable candidate peptides for use in a quality control assay that can distinguish structurally aberrant diphtheria toxoid from compliant toxoids.


Assuntos
Toxoide Diftérico/metabolismo , Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Toxoide Diftérico/análise , Espectrometria de Massas em Tandem/normas , Temperatura
11.
Vaccines (Basel) ; 8(4)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271767

RESUMO

Currently, batch release of toxoid vaccines, such as diphtheria and tetanus toxoid, requires animal tests to confirm safety and immunogenicity. Efforts are being made to replace these tests with in vitro assays in a consistency approach. Limitations of current in vitro assays include the need for reference antigens and most are only applicable to drug substance, not to the aluminum adjuvant-containing and often multivalent drug product. To overcome these issues, a new assay was developed based on mimicking the proteolytic degradation processes in antigen-presenting cells with recombinant cathepsin S, followed by absolute quantification of the formed peptides by liquid chromatography-mass spectrometry. Temperature-exposed tetanus toxoids from several manufacturers were used as aberrant samples and could easily be distinguished from the untreated controls by using the newly developed degradomics assay. Consistency of various batches of a single manufacturer could also be determined. Moreover, the assay was shown to be applicable to Al(OH)3 and AlPO4-adsorbed tetanus toxoids. Overall, the assay shows potential for use in both stability studies and as an alternative for in vivo potency studies by showing batch-to-batch consistency of bulk toxoids as well as for aluminum-containing vaccines.

12.
Mol Pharm ; 17(11): 4375-4385, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33017153

RESUMO

Formaldehyde-inactivated toxoid vaccines have been in use for almost a century. Despite formaldehyde's deceptively simple structure, its reactions with proteins are complex. Treatment of immunogenic proteins with aqueous formaldehyde results in heterogenous mixtures due to a variety of adducts and cross-links. In this study, we aimed to further elucidate the reaction products of formaldehyde reaction with proteins and report unique modifications in formaldehyde-treated cytochrome c and corresponding synthetic peptides. Synthetic peptides (Ac-GDVEKGAK and Ac-GDVEKGKK) were treated with isotopically labeled formaldehyde (13CH2O or CD2O) followed by purification of the two main reaction products. This allowed for their structural elucidation by (2D)-nuclear magnetic resonance and nanoscale liquid chromatography-coupled mass spectrometry analysis. We observed modifications resulting from (i) formaldehyde-induced deamination and formation of α,ß-unsaturated aldehydes and methylation on two adjacent lysine residues and (ii) formaldehyde-induced methylation and formylation of two adjacent lysine residues. These products react further to form intramolecular cross-links between the two lysine residues. At higher peptide concentrations, these two main reaction products were also found to subsequently cross-link to lysine residues in other peptides, forming dimers and trimers. The accurate identification and quantification of formaldehyde-induced modifications improves our knowledge of formaldehyde-inactivated vaccine products, potentially aiding the development and registration of new vaccines.


Assuntos
Citocromos c/química , Formaldeído/farmacologia , Lisina/química , Peptídeos/química , Aldeídos/química , Cromatografia Líquida de Alta Pressão/métodos , Reagentes de Ligações Cruzadas/química , Desaminação/efeitos dos fármacos , Cinética , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Metilação/efeitos dos fármacos , Estrutura Molecular , Vacinas de Produtos Inativados/química
13.
Sci Rep ; 10(1): 11535, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665578

RESUMO

Enzymatic degradation of protein antigens by endo-lysosomal proteases in antigen-presenting cells is crucial for achieving cellular immunity. Structural changes caused by vaccine production process steps, such as formaldehyde inactivation, could affect the sensitivity of the antigen to lysosomal proteases. The aim of this study was to assess the effect of the formaldehyde detoxification process on the enzymatic proteolysis of antigens by studying model proteins. Bovine serum albumin, ß-lactoglobulin A and cytochrome c were treated with various concentrations of isotopically labelled formaldehyde and glycine, and subjected to proteolytic digestion by cathepsin S, an important endo-lysosomal endoprotease. Degradation products were analysed by mass spectrometry and size exclusion chromatography. The most abundant modification sites were identified by their characteristic MS doublets. Unexpectedly, all studied proteins showed faster proteolytic degradation upon treatment with higher formaldehyde concentrations. This effect was observed both in the absence and presence of glycine, an often-used excipient during inactivation to prevent intermolecular crosslinking. Overall, subjecting proteins to formaldehyde or formaldehyde/glycine treatment results in changes in proteolysis rates, leading to an enhanced degradation speed. This accelerated degradation could have consequences for the immunogenicity and the efficacy of vaccine products containing formaldehyde-inactivated antigens.


Assuntos
Catepsinas/metabolismo , Endossomos/efeitos dos fármacos , Formaldeído , Lisossomos/efeitos dos fármacos , Animais , Antígenos/química , Bovinos , Cromatografia Líquida , Citocromos c/química , Endossomos/metabolismo , Escherichia coli/metabolismo , Glicina/química , Humanos , Cinética , Lactoglobulinas/química , Lisossomos/metabolismo , Espectrometria de Massas , Peptídeos/química , Proteólise , Soroalbumina Bovina/química , Solventes
14.
J Pharm Sci ; 109(1): 750-760, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31449816

RESUMO

Subunit vaccines often contain colloidal aluminum salt-based adjuvants to activate the innate immune system. These aluminum salts consist of micrometer-sized aggregates. It is well-known that particle size affects the adjuvant effect of particulate adjuvants. In this study, the activation of human monocytes by hexagonal-shaped gibbsite (ø = 210 ± 40 nm) and rod-shaped boehmite (ø = 83 ± 827 nm) was compared with classical aluminum oxyhydroxide adjuvant (alum). To this end, human primary monocytes were cultured in the presence of alum, gibbsite, or boehmite. The transcriptome and proteome of the monocytes were investigated by using quantitative polymerase chain reaction and mass spectrometry. Human monocytic THP-1 cells were used to investigate the effect of the particles on cellular maturation, differentiation, activation, and cytokine secretion, as measured by flow cytometry and enzyme-linked immunosorbent assay. Each particle type resulted in a specific gene expression profile. IL-1ß and IL-6 secretion was significantly upregulated by boehmite and alum. Of the 7 surface markers investigated, only CD80 was significantly upregulated by alum and none by gibbsite or boehmite. Gibbsite hardly activated the monocytes. Boehmite activated human primary monocytes equally to alum, but induced a much milder stress-related response. Therefore, boehmite was identified as a promising adjuvant candidate.


Assuntos
Adjuvantes Imunológicos/farmacologia , Hidróxido de Alumínio/farmacologia , Óxido de Alumínio/farmacologia , Imunidade Inata/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Adjuvantes Imunológicos/química , Hidróxido de Alumínio/química , Óxido de Alumínio/química , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Coloides , Composição de Medicamentos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Tamanho da Partícula , Células THP-1 , Transcriptoma
15.
J Pharm Sci ; 109(1): 543-557, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678246

RESUMO

Diphtheria toxoid is produced by detoxification of diphtheria toxin with formaldehyde. This study was performed to elucidate the chemical nature and location of formaldehyde-induced modifications in diphtheria toxoid. Diphtheria toxin was chemically modified using 4 different reactions with the following reagents: (1) formaldehyde and NaCNBH3, (2) formaldehyde, (3) formaldehyde and NaCNBH3 followed by formaldehyde and glycine, and (4) formaldehyde and glycine. The modifications were studied by SDS-PAGE, primary amino group determination, and liquid chromatography-electrospray mass spectrometry of chymotryptic digests. Reaction 1 resulted in quantitative dimethylation of all lysine residues. Reaction 2 caused intramolecular cross-links, including the NAD+-binding cavity and the receptor-binding site. Moreover, A fragments and B fragments were cross-linked by formaldehyde on part of the diphtheria toxoid molecules. Reaction 3 resulted in formaldehyde-glycine attachments, including in shielded areas of the protein. The detoxification reaction typically used for vaccine preparation (reaction 4) resulted in a combination of intramolecular cross-links and formaldehyde-glycine attachments. Both the NAD+-binding cavity and the receptor-binding site of diphtheria toxin were chemically modified. Although CD4+ T-cell epitopes were affected to some extent, one universal CD4+ T-cell epitope remained almost completely unaltered by the treatment with formaldehyde and glycine.


Assuntos
Toxina Diftérica/química , Toxoide Diftérico/química , Epitopos de Linfócito T/química , Formaldeído/química , Boroidretos/química , Cromatografia de Fase Reversa , Toxina Diftérica/imunologia , Toxoide Diftérico/imunologia , Composição de Medicamentos , Eletroforese em Gel de Poliacrilamida , Epitopos de Linfócito T/imunologia , Glicina/química , Modelos Moleculares , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
16.
Immunology ; 156(1): 33-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30317555

RESUMO

Systems vaccinology has proven a fascinating development in the last decade. Where traditionally vaccine development has been dominated by trial and error, systems vaccinology is a tool that provides novel and comprehensive understanding if properly used. Data sets retrieved from systems-based studies endorse rational design and effective development of safe and efficacious vaccines. In this review we first describe different omics-techniques that form the pillars of systems vaccinology. In the second part, the application of systems vaccinology in the different stages of vaccine development is described. Overall, this review shows that systems vaccinology has become an important tool anywhere in the vaccine development chain.


Assuntos
Biologia de Sistemas , Vacinas/imunologia , Vacinologia/tendências , Animais , Conjuntos de Dados como Assunto , Desenho de Fármacos , Humanos , Proteômica , Transcriptoma , Vacinação
17.
PLoS One ; 13(5): e0197885, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29813132

RESUMO

Aluminum-based adjuvants have widely been used in human vaccines since 1926. In the absence of antigens, aluminum-based adjuvants can initiate the inflammatory preparedness of innate cells, yet the impact of antigens on this response has not been investigated so far. In this study, we address the modulating effect of vaccine antigens on the monocyte-derived innate response by comparing processes initiated by Al(OH)3 and by Infanrix, an Al(OH)3-adjuvanted trivalent combination vaccine (DTaP), containing diphtheria toxoid (D), tetanus toxoid (T) and acellular pertussis (aP) vaccine antigens. A systems-wide analysis of stimulated monocytes was performed in which full proteome analysis was combined with targeted transcriptome analysis and cytokine analysis. This comprehensive study revealed four major differences in the monocyte response, between plain Al(OH)3 and DTaP stimulation conditions: (I) DTaP increased the anti-inflammatory cytokine IL-10, whereas Al(OH)3 did not; (II) Al(OH)3 increased the gene expression of IFNγ, IL-2 and IL-17a in contrast to the limited induction or even downregulation by DTaP; (III) increased expression of type I interferons-induced proteins was not observed upon DTaP stimulation, but was observed upon Al(OH)3 stimulation; (IV) opposing regulation of protein localization pathways was observed for Al(OH)3 and DTaP stimulation, related to the induction of exocytosis by Al(OH)3 alone. This study highlights that vaccine antigens can antagonize Al(OH)3-induced programming of the innate immune responses at the monocyte level.


Assuntos
Hidróxido de Alumínio/farmacologia , Antígenos de Bactérias/imunologia , Vacinas contra Difteria, Tétano e Coqueluche Acelular/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Adulto , Apresentação de Antígeno/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Humanos , Inflamassomos/metabolismo , Interferon gama/metabolismo , Interleucina-10/metabolismo , Monócitos/citologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
18.
J Proteomics ; 175: 144-155, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29317357

RESUMO

Aluminum-based adjuvants are the most widely used adjuvants in human vaccines. A comprehensive understanding of the mechanism of action of aluminum adjuvants at the molecular level, however, is still elusive. Here, we unravel the effects of aluminum hydroxide Al(OH)3 by a systems-wide analysis of the Al(OH)3-induced monocyte response. Cell response analysis by cytokine release was combined with (targeted) transcriptome and full proteome analysis. Results from this comprehensive study revealed two novel pathways to become activated upon monocyte stimulation with Al(OH)3: the first pathway was IFNß signaling possibly induced by DAMP sensing pathways like TLR or NOD1 activation, and second the HLA class I antigen processing and presentation pathway. Furthermore, known mechanisms of the adjuvant activity of Al(OH)3 were elucidated in more detail such as inflammasome and complement activation, homeostasis and HLA-class II upregulation, possibly related to increased IFNγ gene expression. Altogether, our study revealed which immunological pathways are activated upon stimulation of monocytes with Al(OH)3, refining our knowledge on the adjuvant effect of Al(OH)3 in primary monocytes. SIGNIFICANCE: Aluminum salts are the most used adjuvants in human vaccines but a comprehensive understanding of the working mechanism of alum adjuvants at the molecular level is still elusive. Our Systems Vaccinology approach, combining complementary molecular biological, immunological and mass spectrometry-based techniques gave a detailed insight in the molecular mechanisms and pathways induced by Al(OH)3 in primary monocytes. Several novel immunological relevant cellular pathways were identified: type I interferon secretion potentially induced by TLR and/or NOD like signaling, the activation of the inflammasome and the HLA Class-I and Class-II antigen presenting pathways induced by IFNγ. This study highlights the mechanisms of the most commonly used adjuvant in human vaccines by combing proteomics, transcriptomics and cytokine analysis revealing new potential mechanisms of action for Al(OH)3.


Assuntos
Hidróxido de Alumínio/farmacologia , Monócitos/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Apresentação de Antígeno , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação/imunologia , Monócitos/metabolismo , Proteômica
19.
Proteomics ; 18(12): e1700250, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29251415

RESUMO

Allogeneic stem cell transplantation has emerged as immunotherapy in the treatment of a variety of hematological malignancies. Its efficacy depends on induction of graft versus leukemia by donor lymphocytes. Both graft versus leukemia and graft versus host disease are induced by T cells reactive against polymorphic peptides, called minor histocompatibility antigens (MiHA), which differ between patient and donor and are presented in the context of self-HLA (where HLA is human leukocyte antigen). The allelic counterpart (AC) of the MiHA is generally considered to be absent at the cell surface, based on the absence of immune responses directed against the AC. To study this in detail, we evaluate the recognition, HLA-binding affinity, and cell surface expression of three selected MiHA. By quantitative MS, we demonstrate the similarly abundant expression of both MiHA and AC at the cell surface. We conclude that the absent recognition of the AC cannot generally be explained by insufficient processing and presentation at the cell surface of the AC.


Assuntos
Membrana Celular/imunologia , Leucemia Mieloide Aguda/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Fragmentos de Peptídeos/imunologia , Linfócitos T/imunologia , Alelos , Membrana Celular/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas , Linfócitos T/metabolismo
20.
J Proteome Res ; 16(2): 528-537, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977922

RESUMO

Physicochemical and immunochemical assays were applied to substantiate the relation between upstream processing and the quality of whole-cell pertussis vaccines. Bordetella pertussis bacteria were cultured on a chemically defined medium using a continuous cultivation process in stirred tank reactors to obtain uniform protein expression. Continuous culture favors the consistent production of proteins known as virulence factors. Magnesium sulfate was added during the steady state of the culture in order to diminish the expression of virulence proteins. Changes in gene expression and antigen composition were measured by microarrays, mass spectrometry and ELISA. Transcriptome and proteome data revealed high similarity between the biological triplicates demonstrating consistent cultivation of B. pertussis. The addition of magnesium sulfate resulted in an instant downregulation of the virulence genes in B. pertussis, but a gradual decrease of virulence proteins. The quantity of virulence proteins concurred highly with the potency of the corresponding whole-cell pertussis vaccines, which were determined by the Kendrick test. In conclusion, proteome analysis provided detailed information on the composition and proportion of virulence proteins present in the whole-cell preparations of B. pertussis. Moreover, proteome analysis is a valuable method to monitor the production process of whole-cell biomass and predict the product quality of whole-cell pertussis vaccines.


Assuntos
Antígenos de Bactérias/biossíntese , Bordetella pertussis/genética , Toxina Pertussis/biossíntese , Vacina contra Coqueluche/biossíntese , Proteoma/análise , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Bordetella pertussis/efeitos dos fármacos , Bordetella pertussis/crescimento & desenvolvimento , Bordetella pertussis/patogenicidade , Cromatografia Líquida , Fermentação , Expressão Gênica , Humanos , Sulfato de Magnésio/farmacologia , Espectrometria de Massas , Toxina Pertussis/antagonistas & inibidores , Toxina Pertussis/genética , Vacina contra Coqueluche/genética , Vacina contra Coqueluche/imunologia , Proteoma/biossíntese , Proteoma/genética , Proteoma/imunologia , Coqueluche/imunologia , Coqueluche/microbiologia , Coqueluche/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...