Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 17(1): 38, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823898

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) is uniquely suited to non-invasively and continuously monitor embolism formation in trees. Depending on the MRI method used, quantitative parameter maps of water content and MRI signal relaxation behavior can be generated. The ability to measure dynamic differences in water content and relaxation behavior can be used to detect xylem embolism formation, even if xylem conduits are too small to be spatially resolved. This is especially advantageous when using affordable small-scale low-field MRI scanners. The amount of signal that can be obtained from an object strongly depends on the strength of the magnetic field of the imager's magnet. Imaging at lower resolutions thus would allow to reduce the cost, size and weight of the MRI scanner and to shorten image acquisition times. RESULTS: We investigated how much spatial resolution can be sacrificed without losing the ability to monitor embolism formation in coniferous softwood (spruce, Picea abies) and diffuse porous beech (Fagus sylvatica). Saplings of both species were bench dehydrated, while they were continuously imaged at stepwise decreasing spatial resolutions. Imaging was done by means of a small-scale MRI device, utilizing image matrix sizes of 128 × 128, 64 × 64 and 32 × 32 pixels at a constant FOV of 19 and 23 mm, respectively. While images at the lowest resolutions (pixel sizes 0.59 × 0.59 mm and 0.72 × 0.72 mm) were no longer sufficient to resolve finer details of the stem anatomy, they did permit an approximate localization of embolism formation and the generation of accurate vulnerability curves. CONCLUSIONS: When using MRI, spatial resolution can be sacrificed without losing the ability to visualize and quantify embolism formation. Imaging at lower spatial resolution to monitor embolism formation has two advantages. Firstly, the acquisition time per image can be reduced dramatically. This enables continuous imaging at high time resolution, which may be beneficial to monitor rapid dynamics of embolism formation. Secondly, if the requirements for spatial resolution are relaxed, much simpler MRI devices can be used. This has the potential to make non-invasive MR imaging of embolism formation much more affordable and more widely available.

2.
J Magn Reson ; 323: 106879, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33422986

RESUMO

In this contribution we demonstrate a mobile, integrated MR plant imager that can be handled by one single person and used in the field. Key to the construction of it was a small and lightweight gradient amplifier, specifically tailored to our combination of magnet, gradient coils and the requirements of the desired pulse sequences. To allow imaging of branches and stems, an open C-shaped permanent magnet was used. In the design of the magnet, pole gap width, low weight and robustness were prioritized over homogeneity and field strength. To overcome the adverse effects of short T2*, multi-spin echo imaging was employed, using short echo times and high spectral widths. To achieve microscopic resolution under these constraints requires fast switching field gradients, driven by strong and fast gradient amplifiers. While small-scale spectrometers and RF amplifiers are readily available, appropriate small-scale gradient amplifiers or designs thereof currently are not. We thus constructed a small, 3-channel gradient amplifier on the basis of a conventional current-controlled AB amplifier design, using cheap and well-known parts. The finished device weighs 5 kg and is capable of delivering 40 A gradient pulses of >6 ms in duration. With all components built onto an aluminum hand trolley, the imaging setup weighs 45 kg and is small enough to fit into a car. We demonstrate the mobility and utility of the device imaging quantitative water content and T2, first of an apple tree in an orchard; second, of a beech tree during spring leaf flushing in a greenhouse. The latter experiment ran for a continuous period of 62 days, acquiring more than 6000 images.


Assuntos
Agricultura , Imageamento por Ressonância Magnética/instrumentação , Plantas , Desenho de Equipamento , Água
3.
New Phytol ; 226(5): 1517-1529, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31958150

RESUMO

Magnetic resonance imaging (MRI) is a useful tool to image xylem embolism formation in plants. MRI scanners configured to accept intact plants are rare and expensive. Here, we investigate if affordable small-scale, custom-built low-field MRI scanners would suffice for the purpose. A small-scale, C-shaped permanent magnet was paired with open, plane parallel imaging gradients. The setup was small enough to fit between leaves or branches and offered open access for plant stems of arbitrary length. To counter the two main drawbacks of the system, low signal to noise and reduced magnetic field homogeneity, a multi-spin echo (MSE) pulse sequence was implemented, allowing efficient signal acquisition and quantitative imaging of water content and T2 signal relaxation. The system was tested visualizing embolism formation in Fagus sylvatica during bench dehydration. High-quality images of water content and T2 were readily obtained, which could be utilized to detect the cavitation of vessels smaller than could be spatially resolved. A multiplication of both map types yielded images in which filled xylem appeared with even greater contrast. T2 imaging with small-scale MRI devices allows straightforward visualization of the spatial and temporal dynamics of embolism formation and the derivation of vulnerability curves.


Assuntos
Embolia , Xilema , Imageamento por Ressonância Magnética , Folhas de Planta , Água
4.
ACS Nano ; 7(9): 7648-53, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23941522

RESUMO

Noble-metal particles feature intriguing optical properties, which can be utilized to manipulate them by means of light. Light absorbed by gold nanoparticles, for example, is very efficiently converted into heat, and single particles can thus be used as a fine tool to apply heat to a nanoscopic area. At the same time, gold nanoparticles are subject to optical forces when they are irradiated with a focused laser beam, which renders it possible to print, manipulate, and optically trap them in two and three dimensions. Here, we demonstrate how these properties can be used to control the polymerization reaction and thermal curing of polydimethylsiloxane (PDMS) at the nanoscale and how these findings can be applied to synthesize polymer nanostructures such as particles and nanowires with subdiffraction limited resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...