Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Saudi Pharm J ; 32(1): 101892, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146327

RESUMO

Pentagamavunone-1 (PGV-1), an analog of curcumin, has been studied for its cytotoxic effects in 4T1, MCF7, MCF7/HER2, and T47D breast cancer cells. Its antiproliferative effect is partly mediated through G2/M arrest; however, its molecular mechanism during cell cycle progression remains unknown. In this study, we aimed to determine whether PGV-1 has any anticancer effects on highly aggressive breast cancer cells, with a focus on cell cycle regulatory activity, reactive oxygen species (ROS) generation, and their mediated effects on cancer cells. MDA-MB-231 (triple-negative) and HCC1954 (overexpressed HER2) immortalized human breast cancer cells were used in the study. PGV-1 exhibited cytotoxic activity with an irreversible antiproliferative impact on treated cells and had good selectivity when tested in fibroblast cells. Oral PGV-1 administration suppressed tumor growth in a cell-derived xenograft mouse model. PGV-1 induced the phosphorylation of Aurora A kinase and PLK1 in MDA-MB-231 cells, while PLK1 and cyclin B1 phosphorylation were enhanced in the PGV-1-treated HCC1954 cells during prometaphase arrest. Intracellular ROS production was substantially higher upon PGV-1 treatment following mitotic arrest, and this activity caused impairment of mitochondrial respiration, induced senescence, and subsequently triggered early-to-late apoptosis. Collectively, these results suggest that the molecular mechanism of PGV-1 involves the regulation of mitotic kinases to cause cell cycle arrest and the enhancement of ROS production to impair mitochondrial activity and induce cellular senescence. The therapeutic activities demonstrated by PGV-1 in this study show its potential as an appealing candidate for chemotherapy in breast cancer treatment.

2.
J Adv Pharm Technol Res ; 14(4): 317-324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107450

RESUMO

This study aimed to evaluate the efficacy of Chemoprevention Curcumin Analog-1.1 (CCA-1.1) and Pentagamavunone-1 (PGV-1) in vivo and in vitro in colorectal cancer model. CCA-1.1 or PGV-1 was administered orally to 1,2-dimethylhydrazine (DMH)-induced rats for 16 weeks. The cytotoxicity of both compounds was tested on Caco-2, CT26, and NIH/3T3 cells using the MTT method. The cell cycle, apoptosis, and reactive oxygen species (ROS) levels were analyzed through flow cytometry. X-gal staining was used to examine the compound's effect on senescence. Oral co-administration of CCA-1.1 or PGV-1 significantly suppressed the carcinogenic characteristics and symptoms of premalignant colon cancer relative to DMH-only and untreated groups. CCA-1.1 and PGV-1 administration did not affect the blood profile. CCA-1.1 and PGV-1 demonstrated great cytotoxicity on Caco-2 and CT26 cells, with 50% inhibition concentration (IC50) values of 4.3 ± 0.2 and 3.1 ± 0.1 µM for CCA-1.1 and 11.2 ± 1.1 and 4.8 ± 0.1 µM for PGV-1, respectively, while not toxic against fibroblast cells. Both compounds instigated G2/M arrest and efficiently induced cell senescence and apoptosis. Moreover, these analogs selectively elevated oxidative stress in colon cancer cells without inducing noticeable changes in fibroblasts. In conclusion, PGV-1 and CCA-1.1 suppressed colorectal tumor formation and induced mitotic arrest.

3.
Saudi Pharm J ; 31(12): 101847, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38028209

RESUMO

Introduction: Monoclonal antibodies and targeted therapies against HER2+ breast cancer has improved overall and disease-free survival in patients; however, encountering drug resistance causes recurrence, necessitating the development of newer HER2-targeted medications. A curcumin analog PGB-0-ol showed most cytotoxicity against HCC1954 HER2+ breast cancer cells than against other subtypes of breast cancer cells. Objective: Here, we employed next-generation sequencing technology to elucidate the molecular mechanism underlying the effect of PGB-0-ol on HCC1954 HER2+ breast cancer cells. Methods: The molecular mechanism underlying the action of PGB-0-ol on HCC1954 HER2+ breast cancer cells was determined using next-generation sequencing technologies. Additional bioinformatics studies were performed, including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, disease-gene, and drug-gene associations, network topology analysis (NTA), and gene set enrichment analysis (GSEA). Results: We detected 2,263 differentially expressed genes (DEGs) (1,459 upregulated and 804 downregulated) in the PGB-0-ol- and DMSO-treated HCC1954 cells. KEGG enrichment data revealed the control of phosphatidylinositol signaling system, and ErbB signaling following PGB-0-ol treatment. Gene ontology (GO) enrichment analysis demonstrated that these DEGs governed cell cycle, participated in the mitotic spindle and nuclear membrane, and controlled kinase activity at the molecular level. According to the NTA data for GO enrichment, GSEA data for KEGG, drug-gene and disease-gene, PGB-0-ol regulated PI3K/Akt signaling and cell cycle in breast cancer. Overall, our investigation revealed the transcriptomic profile of PGB-0-ol-treated HCC1954 breast cancer cells following PGB-0-ol therapy. Bioinformatics analyses showed that PI3K/Akt signaling and cell cycle was modulated. However, further studies are required to validate the findings of this study.

4.
Res Pharm Sci ; 18(4): 358-370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614620

RESUMO

Background and purpose: Previous studies highlighted that chemoprevention curcumin analog-1.1 (CCA-1.1) demonstrated an antitumor effect on breast, leukemia, and colorectal cancer cells. By utilizing immortalized MDA-MB-231 and HCC1954 cells, we evaluated the anticancer properties of CCA-1.1 and its mediated activity to promote cellular death. Experimental approach: Cytotoxicity and anti-proliferation were assayed using trypan blue exclusion. The cell cycle profile after CCA-1.1 treatment was established through flow cytometry. May-Grünwald-Giemsa and Hoechst staining were performed to determine the cell cycle arrest upon CCA-1.1 treatment. The involvement of CCA-1.1 in mitotic kinases (aurora A, p-aurora A, p-PLK1, and p-cyclin B1) expression was investigated by immunoblotting. CCA-1.1-treated cells were stained with the X-gal solution to examine the effect on senescence. ROS level and mitochondrial respiration were assessed by DCFDA assay and mitochondrial oxygen consumption rate, respectively. Findings/Results: CCA-1.1 exerted cytotoxic activity and inhibited cell proliferation with an irreversible effect, and the flow cytometry analysis demonstrated that CCA-1.1 significantly halted during the G2/M phase, and further assessment revealed that CCA-1.1 caused metaphase arrest. Immunoblot assays confirmed CCA-1.1 suppressed aurora A kinase in MDA-MB-231 cells. The ROS level was elevated after treatment with CCA-1.1, which might promote cellular senescence and suppress basal mitochondrial respiration in MDA-MB-231 cells. Conclusion and implications: Our data suggested the in vitro proof-of-concept that supports the involvement in cell cycle regulation and ROS generation as contributors to the effectiveness of CCA-1.1 in suppressing breast cancer cell growth.

5.
Asian Pac J Cancer Prev ; 24(5): 1667-1675, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247287

RESUMO

OBJECTIVE: This study aimed to determine the cytoprotective potentials of citronella (Cymbopogon nardus (L.) Rendl.) essential oil (CO) and lemongrass (Cymbopogon citratus (DC.) Stapf) essential oil (LO). METHODS: The essential oils from citronella and lemongrass were obtained by steam-water distillation, then analyzed using Gas Chromatography-Mass Spectrophotometry (GC-MS) to determine the chemical constituents. The antioxidant activity of CO and LO was compared using a total antioxidant capacity kit. The viability of normal kidney epithelial cells Vero and fibroblast NIH-3T3 as the cell models were tested using a trypan blue exclusion assay. The effect of cellular senescence inhibition on both cell models was measured using senescence-associated ß-galactosidase (SA-ß-gal) staining. The mechanism of action of CO and LO in the protection of cellular damage against doxorubicin was also confirmed through 2',7'-dichlorofluorescin diacetate (DCFDA) staining to discover the ability to decrease reactive oxygen species (ROS) levels and a gelatin zymography assay to observe the activity of matrix metalloproteinases (MMPs). RESULTS: The major marker components of CO and LO were citronellal and citral, respectively. Both oils showed low cytotoxic activity against Vero and NIH-3T3 cells, with IC50 values of over 40 µg/mL. LO exhibited higher antioxidant capacity than CO, but there was no effect on the intracellular ROS level of both oils on Vero and NIH-3T3 cells. However, CO and LO decreased cellular senescence induced by doxorubicin exposure on both cells, as well as suppressed MMP-2 expression.  Conclusion: Both CO and LO decrease the cellular senescence and MMP-2 expression with less cytotoxic effects on normal cells independently from their antioxidant capacities. The results were expected to support the use of CO and LO as tissue protective and anti-aging agents in maintaining the body's cellular health against chemotherapeutics or cellular damaging agents.


Assuntos
Cymbopogon , Óleos Voláteis , Humanos , Animais , Camundongos , Cymbopogon/química , Metaloproteinase 2 da Matriz , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Células NIH 3T3 , Óleos Voláteis/farmacologia , Doxorrubicina/farmacologia
6.
J Egypt Natl Canc Inst ; 35(1): 6, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36967442

RESUMO

BACKGROUND: We previously reported that in highly metastatic breast cancer cells, doxorubicin (DOX) at non-toxic concentrations promoted cell migration and invasion. Hesperidin (30, 5, 9-dihydroxy-40-methoxy-7-orutinosyl flavanone) is a flavonoid glycoside isolated from citrus/lemon plant that possesses a cytotoxic effect in several cancer cells. In this study, we investigate whether DOX efficacy is enhanced by hesperidin (Hsd) and the molecular pathway involved in highly metastatic breast cancer, 4T1. METHODS: Combined cytotoxicity of Hsd and DOX was evaluated with MTT assay and was analyzed using Chou-Talalay's method. To better understand the underlying mechanism, several factors, including apoptosis and cell cycle arrest were analyzed by flow cytometry. In addition, antimigration activity was evaluated by scratch wound healing assay, MMP-9 expression by ELISA and gelatin zymography, and Rac-1 protein level using western blot. The data on survival rate and expression level of MMP-9 and Rac-1 were obtained from Gene Expression OMNIBUS (GEO). RESULTS: Under MTT assay, Hsd showed a cytotoxic effect in a concentration-dependent manner with an IC50 value of 284 µM on 4T1 cells. Hsd synergistically enhanced the cytotoxic effect of DOX which seemed to correlate with an increase in apoptotic cell death, G2/M cell cycle arrest and blocked the migration of 4T1 cells. At 10 nM, doxorubicin induced lamellipodia formation, and increased the level of Rac-1 and metalloproteinase-9 (MMP-9) expression. Interestingly, combined treatment of DOX and Hsd dramatically downregulated the expression of MMP-9 and Rac-1. These results indicated that Hsd block the cell migration induced by DOX under in vitro studies. CONCLUSION: These findings strongly suggest that Hsd possesses a potential synergistic effect that can be developed to enhance the anticancer efficacy of DOX and reduce the risks of chemotherapy use in highly metastatic breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Hesperidina , Humanos , Feminino , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Transição Epitelial-Mesenquimal , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/farmacologia , Metaloproteinase 9 da Matriz/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Antineoplásicos/uso terapêutico , Apoptose
7.
Res Pharm Sci ; 18(6): 708-721, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39005569

RESUMO

Background and purpose: Breast cancer stem cells (BCSCs) as a kind of tumor cells are able to regenerate themselves, leading to apoptosis resistance and cancer relapse. It was reported that BCSCs contain lower levels of reactive oxygen species (ROS) associated with stemness capability. Caesalpinia sappan has been proposed for its chemopreventive potency against several cancer cells. This study aimed to evaluate the effects of Caesalpinia sappan extract (CSE) on cytotoxicity, apoptosis induction, ROS generation, and stemness markers of MDA-MB-231 and its BCSCs. Experimental approach: Caesalpinia sappan was extracted under maceration with methanol. Magnetic-activated cell sorting was used to isolate BCSCs based on CD44+ and CD24- cell surface expression. The MTT test was used to assess the cytotoxic effects of CSE on MDA-MB-231 and BCSCs. Moreover, flow cytometry was used to examine the cell cycle distribution, apoptosis, ROS level, and CD44/CD24 level. Using qRT-PCR, the gene expression of the stemness markers NANOG, SOX-2, OCT-4, and c-MYC was assessed. Findings/Results: We found that MDA-MB-231 contains 80% of the BCSCs population, and CSE showed more potent cytotoxicity toward BCSCs than MDA-MB-231. CSE caused apoptosis in MDA-MB-231 and BCSCs cells by increasing the level of ROS. Furthermore, CSE significantly reduced the MDA-MB-231 stemness marker CD44+/CD24- and the mRNA levels of pluripotent markers of cells in BCSCs. Conclusion and implications: CSE potentially reduces BCSCs stemness, which may be mediated by the elevation of the ROS levels and reduction of the expression levels of stemness transcription.

8.
Iran J Pharm Res ; 22(1): e138856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38655233

RESUMO

Background: Two mangostin compounds, gamma-mangostin and alpha-mangostin, show anticancer properties through the inhibition of cell proliferation and cell migration. Metastatic triple-negative breast cancer (TNBC) cells, including MDA-MB-231, highly express C-X-C chemokine receptor type 4 (CXCR4) to maintain reactive oxygen species (ROS) and cell migration. Objectives: This study was performed to analyze and compare different modes of action of γ-mangostin and α-mangostin as antimigratory effects targeted on CXCR4 in MDA-MB-231 as a model of TNBC cell. Methods: This study investigated the effect of γ-mangostin and α-mangostin using a series of assays, including Cell Counting Kit-8 (CCK-8) assay for cytotoxicity, wound healing assay for migration study, quantitative real-time polymerase chain reaction (qRT-PCR) for gene expression analysis, and flow cytometry for ROS measurement, along with in silico study to observe the binding between the compound and CXCR4. Results: The findings revealed half maximal inhibitory concentration (IC50) values of 25 and 20 µM for γ-mangostin and α-mangostin in MDA-MB 231 cells, respectively. Moreover, a concentration of 10 µM was used for the migration assay. Both γ-mangostin and α-mangostin significantly suppressed cell migration within 24 hours. The present gene expression studies revealed the downregulation of key migration-associated genes, namely Farp, CXCR4, and LPHN2, upon γ-mangostin treatment but not α-mangostin. Additionally, both γ-mangostin and α-mangostin increased cellular ROS generation, highlighting the same effect of γ-mangostin and α-mangostin ROS elevation to inhibit cancer cell migration. Molecular docking simulations further suggested a potential interaction between γ-mangostin and α-mangostin with CXCR4 in high affinity. Conclusions: These findings suggest that both γ-mangostin and α-mangostin inhibit breast cancer cell migration and induce cellular ROS levels in MDA-MB-231 cells; notably, γ-mangostin suppresses CXCR4 mRNA expression that might correlate to its activity to inhibit MDA-MB-231 cell migration.

9.
Adv Pharm Bull ; 12(3): 603-612, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35935043

RESUMO

Purpose: This study aimed to challenge the anticancer potency of pentagamavunone-1 (PGV- 1) and obtain a new compound (Chemoprevention-Curcumin Analog 1.1, CCA-1.1) with improved chemical and pharmacological properties. Methods: CCA-1.1 was prepared by changing the ketone group of PGV-1 into a hydroxyl group with NaBH4 as the reducing agent. The product was purified under preparative layer chromatography and confirmed with HPLC to show about 93% purity. It was tested for its solubility, stability, and cytotoxic activities on several cancer cells. The structure of the product was characterized using 1HNMR, 13C-NMR, FT-IR, and HR-mass spectroscopy. Results: Molecular docking analysis showed that CCA-1.1 performed similar or better interaction to NF-κB pathway-related signaling proteins (HER2, EGFR, IKK, ER-alpha, and ER-beta) and reactive oxygen species (ROS) metabolic enzymes (NQO1, NQO2, GSTP1, AKC1R1, and GLO1) compared with PGV-1, indicating that CCA-1.1 exhibits the same or better anticancer activity than PGV-1. CCA-1.1 also showed better solubility and stability than PGV-1 in aqueous solution at pH 1.0-7.4 under light exposure at room temperature. The cytotoxic activities of CCA-1.1 against several (10) cancer cell lines revealed the same or better potency than PGV-1. Conclusion: In conclusion, CCA-1.1 performs better chemical and anticancer properties than PGV-1 and shows promise as an anticancer agent with high selectivity.

10.
Asian Pac J Cancer Prev ; 23(8): 2623-2632, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36037115

RESUMO

OBJECTIVE: The present research aims to report cytotoxic and antimigratory activities of the oxidized form of brazilin, i.e., brazilein, and the effects of the combination of brazilein-doxorubicin on MCF-7/HER2 cells. METHODS: The MTT assay was conducted to test the cytotoxic activity, while flow cytometry with PI and PI-annexin V staining were respectively performed for cell cycle and apoptosis analyses. Migration and invasion analyses were assessed via Boyden chamber assay, while HER2, Rac1, p120, MMP2, and MMP9 protein levels were determined by immunoblotting and gelatin zymography. Molecular docking of ligands with HER2, Src, PI3Kα, PI3KΔ, and PI3Kγ proteins was evaluated using MOE 2010. RESULTS: The MTT assay showed that the IC50 value of brazilein against MCF-7/HER2 cells was 51 ± 2.1 µM. Moreover, brazilein and its combination with doxorubicin-induced G2/M accumulation and apoptosis. Combination of brazilein-doxorubicin inhibited cell migration and tended to decrease HER2, Rac1, p120, MMP2, and MMP9 protein expression levels. Based on our molecular docking study, the docking score of brazilein with PI3Kγ is comparable to that of the native ligand. CONCLUSION: Taken together, a combination of brazilein-doxorubicin exhibited synergistic cytotoxic and antimigratory effects on MCF-7/HER2 cells.
.


Assuntos
Antineoplásicos , Metaloproteinase 9 da Matriz , Antineoplásicos/farmacologia , Apoptose , Benzopiranos , Doxorrubicina/farmacologia , Humanos , Indenos , Metaloproteinase 2 da Matriz , Simulação de Acoplamento Molecular
11.
Iran J Pharm Res ; 21(1): e123820, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35765510

RESUMO

Pentagamavunon-1 performs more potent anti-cancer effects than curcumin against various cancer cells, but it remains to be optimized. Piperine shows the activity as an enhancer of a therapeutic agent. This study expects to achieve higher effectiveness of PGV-1 on 4T1 breast cancer cells through co-treatment with piperine with exploring the effect of cytotoxicity, mitotic catastrophe, cellular senescence, and target proteins of PGV-1 and piperine on the regulation of mitosis in TNBC cells (4T1). The assays emphasize MTT assay, May Grünwald-Giemsa staining, SA-ß-galactosidase assay, and bioinformatics analysis, respectively, to elicit the respected activities. The results revealed that PGV-1 performed a cytotoxic effect with an IC50 value of 9 µM while piperine showed a lower cytotoxic effect with an IC50 value of 800 µM on 4T1 cells 24 h treatment. However, the combination treatment of both showed a synergistic cytotoxic enhancement effect with an average CI value < 1. Furthermore, the combination of PGV-1 and piperine induced mitotic catastrophe and senescence better than the single treatment. Treatment of 1 µM of PGV-1 and 400 µM of piperine increased the percentage of senescent cells by 33%. Bioinformatics analysis revealed that PGV-1 and piperine target proteins play a role in mitotic regulation, namely CDK1, KIF11, AURKA, AURKB, and PLK1, to contribute to mitotic catastrophe. Therefore, piperine increases the effectiveness of PGV-1 to suppress 4T1 cells growth synergistically that may occur through mitotic catastrophe and senescence targeting on mitotic regulatory proteins.

12.
Asian Pac J Cancer Prev ; 23(2): 743-752, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35225488

RESUMO

OBJECTIVE: To evaluate the anti-cancer properties of Caesalpinia sappan and Ficus septica in combination with doxorubicin on 4T1 cells, confirm their nephroprotective activities, and predict the molecular targets of the underlying mechanisms. METHODS: The cytotoxic activities of all extracts and doxorubicin were determined by MTT assay followed by cell cycle and apoptosis analysis using flow cytometry. Immunoblotting was used to determine the protein expressions. The proteins involved in the cell proliferation and migration were analyzed through bioinformatics approaches, whereas, the interaction between compounds and protein targets was observed through molecular docking. Furthermore, the effect of the extracts on cell migration was analyzed by scratch wound healing assay. The intracellular ROS after treatment with extracts was observed using DCFDA staining flow cytometry. RESULTS: Both ECS and EFS performed cytotoxic properties and significantly enhanced doxorubicin's cytotoxic effects against 4T1 cells. However, these cytotoxic activities did not correlate with the cell cycle progression. On the contrary, the combination treatment caused apoptosis that may correlate with the decreasing of IκBα phosphorylation, indicating that all agents targeted the inhibition of NF-κB activation. The combination treatments also inhibited cell migration and decreased MMP-9 expression. TNBC proliferation and metastasis needed at least 54 proteins to be activated, some of them are related to NF-κB activation. The inhibitory effect of ECS correlated with the interaction of brazilin and brazilein to IKK, a kinase protein that plays a role in IκBα phosphorylation. In addition, ECS and EFS reduced ROS expression in Vero cells caused by doxorubicin. CONCLUSION: In conclusion, ECS and EFS effectively enhanced the cytotoxic effect of doxorubicin and inhibit cell migration on 4T1 cells and these activities may correlate to the inhibitory effect of NF-κB activation. ECS and EFS also exhibit ROS suppressing effect on Vero cells that may be beneficent to reduce nephrotoxicity of chemotherapeutic treatment.


Assuntos
Caesalpinia/química , Doxorrubicina/farmacologia , Ficus/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Quimioterapia Combinada , Humanos , Transdução de Sinais/efeitos dos fármacos , Células Vero/efeitos dos fármacos
13.
J Adv Pharm Technol Res ; 13(1): 70-76, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223445

RESUMO

Boronic acid-containing curcumin analog, pentagamaboronon-0 (PGB-0), acts as a potential boron-carrier agent but has limited water solubility. Thus, a new compound (PGB-0-ol) with better chemical and pharmacological properties than PGB-0 has been synthesized. Molecular docking was performed using a molecular operating environment. Prediction of PGB-0-ol absorption, distribution, metabolism, and excretion (ADME) was performed using pkCSM software. PGB-0-ol was synthesized by adding NaBH4 to PGB-0 and stirring for 1 h. The crude PGB-0-ol was purified using preparative layer chromatography. Cell viability was evaluated using the trypan blue exclusion assay. In comparison to PGB-0 based on molecular docking study, PGB-0-ol could interact in with several cancer biomarkers, such as human epidermal growth factor2 epidermal growth factor receptor, IκB kinase, folate receptor-α, and integrin αvß3. PGB-0-ol also showed an improved ADME profile because of its higher water solubility than PGB-0. PGB-0-ol was synthesized by selective ketone reduction of PGB-0 into primary alcohol by sodium borohydrate producing 30% yield. The cytotoxicity of PGB-0-ol against several breast cancer cells was lower than that of PGB-0. The novel compound PGB-0-ol was synthesized using simple steps. PGB-0-ol has low cytotoxicity against breast cancer cells and could be applied in boron neutron capture therapy as a boron carrier.

14.
Asian Pac J Cancer Prev ; 23(1): 241-251, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35092394

RESUMO

OBJECTIVE: To investigate vetiver oil (VO) selectivity effects on several cancer cell types and identify the ß-caryophyllene role and mechanisms to prevent cancer development. METHODS: Cytotoxic effects of VO on three types of cancer cells (WiDr, 4T1, T47D) were determined using MTT assay. VO's effects on the cell cycle and apoptosis were analyzed using flow cytometry. Intracellular Reactive Oxygen Species (ROS) of cells after treatment with VO was observed with DCFDA staining. Bioinformatics study and molecular docking were used to determine the molecular targets of VO. RESULTS: VO contained various essential oils in which ß-caryophyllene was the most abundant. 4T1 cells performed the lowest IC50 value. WiDr and 4T1 cells showed an arrest in the G2/M phase, while T47D showed an increase of sub G1 population after VO treatment. On the other hand, apoptosis was only observed in WiDr and T47D cells. ROS levels were increased significantly in WiDr and T47D cells but not in 4T1 cells. Cannabinoids CB2 receptor (CNR2) was highly expressed in 4T1 cells and commonly exhibited a low survival rate on Triple Negative Breast Cancer (TNBC) patients. CNR2 was the notable target of ß-caryophyllene and performed agonistic interaction, which might have contributed to its cytotoxic activity against 4T1 cells. CONCLUSION: The molecular interaction of VO cannabinoid agonists and the CNR2 receptor was the underlying cause of VO cytotoxicity, which is a VO distinction on TNBC. Therefore, VO is better suited for use as an anti-cancer agent in TNBC cells.


Assuntos
Antineoplásicos/farmacologia , Vetiveria , Óleos de Plantas/farmacologia , Receptor CB2 de Canabinoide/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Receptor CB2 de Canabinoide/agonistas
15.
J Complement Integr Med ; 19(4): 921-928, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34126659

RESUMO

OBJECTIVES: The long-term and high-dose use of doxorubicin as chemotherapy for triple-negative breast cancer (TNBC) patients induces epithelial-to-mesenchymal transition (EMT) and stimulates cancer metastasis. Cinnamaldehyde is a major compound of cinnamon oil (CO) suppressing Snail and NFκB activity that are involved in cell migration. This study aims to explore the activity of CO as a co-chemotherapeutic agent on 4T1 breast cancer cells. METHODS: The CO was obtained by water and steam distillation and was characterized phytochemically by gas chromatography-mass spectrometry (GC-MS). Cytotoxic activity of single CO or in combination with doxorubicin was observed by MTT assay. Cell migration and MMP-9 expression were measured by scratch wound healing and gelatin zymography assays. The intracellular reactive oxygen species (ROS) levels were observed by 2',7'-dichlorofluorescin diacetate (DCFDA) staining flowcytometry. RESULTS: The phytochemical analysis with GC-MS showed that CO contains 14 compounds with cinnamaldehyde as the major compound. CO exhibited cytotoxicity on 4T1 cells with the IC50 value of 25 µg/mL and its combination with doxorubicin decreased cell viability and inhibited cell migration compared to a single use. Furthermore, the combination of CO and doxorubicin inhibited MMP-9 expression and elevated intracellular ROS levels compared to control. CONCLUSIONS: CO has the potential to be developed as a co-chemotherapy agent through inhibition of cell migration, and intracellular ROS levels elevation.

16.
Iran J Pharm Res ; 20(2): 57-67, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567146

RESUMO

Annona muricata L. extract (AME) exhibits cytotoxic activities on various types of cancer cells. This study aims to unveil the anticancer activity of AME as a cotreatment agent with doxorubicin (dox) on 4T1 cells and AME's relation to senescence. AME was obtained by maceration using 96% ethanol. AME was then subjected to qualitative analysis using TLC compared to quercetin (hRf = 75). Spectrophotometry analysis of AME resulted in a total flavonoid content of 2.3% ± 0.05%. Cytotoxic evaluation using the MTT assay revealed that AME showed an IC50 value of 63 µg/mL, while its combination (25 µg/mL) with dox (10 nM) decreased the viability of 4T1 cells to 58 % (CI = 0.15). Flowcytometry using propidium iodide staining confirmed that AME (13 and 25 µg/mL) caused cell cycle arrest in the G1 phase as a single treatment and G2/M arrest in combination with dox. However, by using the dichloro dihydrofluorescein diacetate staining assay, it turned out that AME at concentrations of 13 and 25 µg/mL decreased intracellular reactive oxygen species (ROS) levels both as a single treatment and in combination with dox. Senescence-associated ß - galactosidase assay showed that AME decreased dox-induced senescence. AME alone and in combination with dox (cotreatment) showed cytotoxic effect synergistically on 4T1 cells, but this was not caused by an increase in intracellular ROS levels as well as senescence induction. Therefore, AME showed its potential to be a cotreatment agent with antioxidant property on triple-negative breast cancer cells.

17.
Asian Pac J Cancer Prev ; 22(9): 2929-2938, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582664

RESUMO

OBJECTIVE: We aim to enhance the effectiveness of curcumin analog PGV-1 through co-treatment with diosmin, a citrus flavonoid, on 4T1 cells and evaluate the molecular targets underlying its effect on the cell cycle. METHODS: Cytotoxic effects were performed by MTT assay against 4T1 cells. The May Grünwald-Giemsa staining was used to observe cell cycle arrest. The senescence was assayed with SA-ß-gal staining. Bioinformatic studies were utilized to discover protein targets of PGV-1 and diosmin on triple-negative breast cancer (TNBC) using SwissTargetPrediction, then exploration of protein targets was performed using the TCGA dataset via the UALCAN website. Kaplan-Meier was performed using GraphPad with data from the TCGA dataset via Oncoln. Using MOE 2010, we conducted the binding affinity between PGV-1 and diosmin to protein targets. RESULTS: PGV-1 and diosmin showed cytotoxic effect with IC50 values of 9 µM and 389 µM, respectively, and the combined cytotoxic assay exhibited a synergistic effect with a combination index (CI) of <1. PGV-arrested 4T1 cells in pro-metaphase and induced mitotic catastrophe, while the combination of diosmin with PGV-1 increased the number of mitotic catastrophes. The SA-ß-gal assay revealed that both compounds were capable of inducing senescence in 4T1 cells. Study bioinformatics and molecular docking showed that PGV-1 and diosmin target cell cycle regulatory proteins in TNBC, namely CDK1, KIF11, and AURKA. Thus, the combination of diosmin and PGV-1 modulating the cell cycle that causes senescence and catastrophic death of 4T1 cancer cells is related to the inhibition of these cell cycle proteins. CONCLUSION: Diosmin enhances the cytotoxic effect of PGV-1 synergistically on 4T1 cancer cells, which correlates to the increasing senescence and mitotic catastrophe. The synergistic effect of the co-treatment is likely to target AURKA, CDK1, and KIF11. The combination of PGV-1 and diosmin performs a potential as a combinatorial anticancer drug for TNBC.


Assuntos
Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Curcumina/análogos & derivados , Diosmina/farmacologia , Mitose/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Curcumina/farmacologia , Quimioterapia Combinada , Feminino , Humanos
18.
J Egypt Natl Canc Inst ; 33(1): 19, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34337682

RESUMO

BACKGROUND: The poor outcomes from triple-negative breast cancer (TNBC) therapy are mainly because of TNBC cells' heterogeneity, and chemotherapy is the current approach in TNBC treatment. A previous study reported that CCA-1.1, the alcohol-derivative from monocarbonyl PGV-1, exhibits anticancer activities against several cancer cells, as well as in TNBC. This time, we utilized an integrative bioinformatics approach to identify potential biomarkers and molecular mechanisms of CCA-1.1 in inhibiting proliferation in TNBC cells. METHODS: Genomics data expression were collected through UALCAN, derived initially from TCGA-BRCA data, and selected for TNBC-only cases. We predict CCA-1.1 potential targets using SMILES-based similarity functions across six public web tools (BindingDB, DINIES, Swiss Target Prediction, Polypharmacology browser/PPB, Similarity Ensemble Approach/SEA, and TargetNet). The overlapping genes between the CCA-1.1 target and TNBC (CPTGs) were selected and used in further assessment. Gene ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) network analysis were generated in WebGestalt. The protein-protein interaction (PPI) network was established in STRING-DB, and then the hub-genes were defined through Cytoscape. The hub-gene's survival analysis was processed via CTGS web tools using TCGA database. RESULTS: KEGG pathway analysis pointed to cell cycle process which enriched in CCA-1.1 potential targets. We also identified nine CPTGs that are responsible in mitosis, including AURKB, PLK1, CDK1, TPX2, AURKA, KIF11, CDC7, CHEK1, and CDC25B. CONCLUSION: We suggested CCA-1.1 possibly regulated cell cycle process during mitosis, which led to cell death. These findings needed to be investigated through experimental studies to reinforce scientific data of CCA-1.1 therapy against TNBC.


Assuntos
Curcumina , Neoplasias de Mama Triplo Negativas , Proteínas de Ciclo Celular , Biologia Computacional , Curcumina/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Serina-Treonina Quinases , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
19.
Asian Pac J Cancer Prev ; 22(6): 1827-1836, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181339

RESUMO

OBJECTIVE: Chemoprevention curcumin Analog-1.1 (CCA-1.1) demonstrates antineoplastic effect toward cancer cells. By using triple-negative breast cancer (TNBC), 4T1, and human epidermal growth factor receptor 2 (HER2)-enriched metastatic cells (MCF-7/HER2), we evaluate the cytotoxic and antimigration activities from CCA-1.1. METHODS: The cytotoxic activities from a single treatment of CCA-1.1 and in combination with doxorubicin were determined through MTT assay. We also calculated the selectivity index and combination index of CCA-1.1 from the cytotoxic data. Migrating cells were evaluated using wound healing assay, and the MMP2 and MMP9 secretion levels were determined through gelatin zymography. RESULTS: As hypothesized, CCA-1.1 performed cytotoxic activity during treatment in 4T1 and MCF-7/HER2 cancer cells with good selectivity (Selectivity Index >2). In addition, CCA-1.1 demonstrated a synergistic effect in combinatorial treatment with a low dose of doxorubicin. A single treatment of CCA-1.1 repressed cell migration in 4T1 and MCF-7/HER2 cells. Under gelatin zymography, CCA-1.1 subsided the activities of MMP-9, thereby revealing the potency of CCA-1.1 as an anti-migratory agent. Moreover, MMP-9 was also eminently expressed in TNBC and HER2-enriched breast cancer cells when compared with that in other subtypes. CONCLUSION: Our preliminary study collectively reinforces the potential effect of CCA-1.1 through the inhibition of highly aggressive cell migration, particularly in breast cancer.


Assuntos
Antineoplásicos/farmacologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptor ErbB-2/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quimioprevenção , Sinergismo Farmacológico , Feminino , Humanos , Células Tumorais Cultivadas
20.
Adv Pharm Bull ; 11(1): 188-196, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33747866

RESUMO

Purpose: The current study aims to evaluate the in vitro cytotoxic and cell migration effects of synthetic curcumin and its analogues on HER2 and nuclear factor kappa B (NFκB) pathways, as well as the in vivo inhibitory effect on cancer growth of metastatic breast cancer. Methods: Cell viability, protein expression, and protein localization were determined in vitro using MTT assay, western blotting, and immunofluorescence, respectively. Meanwhile, scratch wound healing assay and gelatin zymography were conducted to investigate the metastasis inhibitory effect. The in vivo anti-tumor ability was evaluated in xenograft mouse model using triple-negative breast cancer (TNBC) cells. Results: Curcumin, PGV-0, and PGV-1 exhibited cytotoxic effect against HER2-overexpressing breast cancer cells. Although PGV-1 showed the best activity in the single cytotoxic assay, curcumin showed the strongest synergism with doxorubicin. Curcumin and PGV-0 inhibited membrane localization of HER2. In contrast, PGV-1 neither inhibited localization nor decreased the expression of HER2, nonetheless showed the most potent inhibition against nuclear localization of p65 indicating the different mechanisms of curcumin, PGV-0, and PGV-1. Regarding cancer metastasis, curcumin and PGV-1 showed inhibitory activities against cell migration and inhibited MMP-2 and MMP-9 protein expression. Lastly, PGV-1 was more potent compared to curcumin to suppress the tumor formation of metastatic breast cancer xenograft model in nude mice. Conclusion: Overall, our study strengthens the potency of curcumin analogue, PGV-1, for treating several types of cancer, including metastatic breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...