Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203012

RESUMO

Brain-computer interfaces use signals from the brain, such as EEG, to determine brain states, which in turn can be used to issue commands, for example, to control industrial machinery. While Cloud computing can aid in the creation and operation of industrial multi-user BCI systems, the vast amount of data generated from EEG signals can lead to slow response time and bandwidth problems. Fog computing reduces latency in high-demand computation networks. Hence, this paper introduces a fog computing solution for BCI processing. The solution consists in using fog nodes that incorporate machine learning algorithms to convert EEG signals into commands to control a cyber-physical system. The machine learning module uses a deep learning encoder to generate feature images from EEG signals that are subsequently classified into commands by a random forest. The classification scheme is compared using various classifiers, being the random forest the one that obtained the best performance. Additionally, a comparison was made between the fog computing approach and using only cloud computing through the use of a fog computing simulator. The results indicate that the fog computing method resulted in less latency compared to the solely cloud computing approach.

2.
Rev. mex. ing. bioméd ; 43(1): 1208, Jan.-Apr. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1389187

RESUMO

ABSTRACT The novel coronavirus (COVID-19) is a disease that mainly affects the lung tissue. The detection of lesions caused by this disease can help to provide an adequate treatment and monitoring its evolution. This research focuses on the bi- nary classification of lung lesions caused by COVID-19 in images of computed tomography (CT) using deep learning. The database used in the experiments comes from two independent repositories, which contains tomographic scans of patients with a positive diagnosis of COVID-19. The output layers of four pre-trained convolutional networks were adapted to the proposed task and re-trained using the fine-tuning technique. The models were validated with test images from the two database's repositories. The model VGG19, considering one of the repositories, showed the best performance with 88% and 90.2% of accuracy and recall, respectively. The model combination using the soft voting technique presented the highest accuracy (84.4%), with a recall of 94.4% employing the data from the other repository. The area under the receiver operating characteristic curve was 0.92 at best. The proposed method based on deep learning represents a valuable tool to automatically classify COVID-19 lesions on CT images and could also be used to assess the extent of lung infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...