Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(9): 8634-8645, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37093562

RESUMO

Metallic nanostructures supporting surface plasmon modes can concentrate optical fields and enhance luminescence processes from the metal surface at plasmonic hotspots. Such nanoplasmonic metal luminescence contributes to the spectral background in surface-enhanced Raman spectroscopy (SERS) measurements and is helpful in bioimaging, nanothermometry and chemical reaction monitoring applications. Although there is growing interest in nanoplasmonic metal luminescence, its dependence on voltage modulation has received limited attention in research investigations. Also, the hyphenated electrochemical surface-enhanced Raman spectroscopy (EC-SERS) technique typically ignores voltage-dependent spectral background information associated with nanoplasmonic metal luminescence due to limited mechanistic understanding and poor measurement reproducibility. Here, we report a combined experiment and theory study on dynamic voltage-modulated nanoplasmonic metal luminescence from hotspots at the electrode-electrolyte interface using multiresonant nanolaminate nano-optoelectrode arrays. Our EC-SERS measurements under 785 nm continuous wavelength laser excitation demonstrate that short-wavenumber nanoplasmonic metal luminescence associated with plasmon-enhanced electronic Raman scattering (PE-ERS) exhibits a negative voltage modulation slope (up to ≈30% V-1) in physiological ionic solutions. Furthermore, we have developed a phenomenological model to intuitively capture the plasmonic, electronic, and ionic characteristics at the metal-electrolyte interface to understand the observed dependence of the PE-ERS voltage modulation slope on voltage polarization and ionic strength. The current work represents a critical step toward the general application of nanoplasmonic metal luminescence signals in optical voltage biosensing, hybrid optical-electrical signal transduction, and interfacial electrochemical monitoring.

2.
Nanoscale ; 14(41): 15373-15383, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36218083

RESUMO

In situ spatiotemporal characterization of correlated bioelectrical and biochemical processes in living multicellular systems remains a formidable challenge but can offer crucial opportunities in biology and medicine. A promising approach is to develop bio-interfaced multifunctional micro-/nano-sensor arrays with complementary biophotonic-bioelectronic modalities and biomimetic topology to achieve combined bioelectrical and biochemical detection and tight device-cell coupling. However, a system-level engineering strategy is still missing to create multifunctional micro-/nano-sensor arrays that meet the multifaceted design requirements for in situ spatiotemporal characterizations of living systems. Here, we demonstrate a hierarchical modular design and fabrication approach to develop scalable two-tier protruding micro-/nano-optoelectrode arrays that extend the design space of biomimetic micro-/nano-pillar topology, plasmonic nanoantenna-based biophotonic function in surface-enhanced Raman spectroscopy (SERS), and micro-/nano-electrode-based bioelectronics function in electrochemical impedance spectroscopy (EIS). Notably, two-tier protruding micro-/nano-optoelectrode arrays composed of nanolaminate nanoantenna arrays on top of micropillar electrode arrays can support plasmonic nanocavity modes with high SERS enhancement factors (≈106) and large surface-to-volume ratio with significantly reduced interfacial impedance in EIS measurements. We envision that scalable two-tier protruding micro-/nano-optoelectrode arrays can potentially serve as bio-interfaced multifunctional micro-/nano-sensor arrays for in situ correlated spatiotemporal bioelectrical-biochemical measurements of living multicellular systems such as neuronal network cultures, cancerous organoids, and microbial biofilms.


Assuntos
Espectroscopia Dielétrica , Análise Espectral Raman , Análise Espectral Raman/métodos , Biomimética , Eletrodos , Eletricidade
3.
Small ; 18(45): e2204517, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36161480

RESUMO

Multicellular systems, such as microbial biofilms and cancerous tumors, feature complex biological activities coordinated by cellular interactions mediated via different signaling and regulatory pathways, which are intrinsically heterogeneous, dynamic, and adaptive. However, due to their invasiveness or their inability to interface with native cellular networks, standard bioanalysis methods do not allow in situ spatiotemporal biochemical monitoring of multicellular systems to capture holistic spatiotemporal pictures of systems-level biology. Here, a high-throughput reverse nanoimprint lithography approach is reported to create biomimetic transparent nanoplasmonic microporous mesh (BTNMM) devices with ultrathin flexible microporous structures for spatiotemporal multimodal surface-enhanced Raman spectroscopy (SERS) measurements at the bio-interface. It is demonstrated that BTNMMs, supporting uniform and ultrasensitive SERS hotspots, can simultaneously enable spatiotemporal multimodal SERS measurements for targeted pH sensing and non-targeted molecular detection to resolve the diffusion dynamics for pH, adenine, and Rhodamine 6G molecules in agarose gel. Moreover, it is demonstrated that BTNMMs can act as multifunctional bio-interfaced SERS sensors to conduct in situ spatiotemporal pH mapping and molecular profiling of Escherichia coli biofilms. It is envisioned that the ultrasensitive multimodal SERS capability, transport permeability, and biomechanical compatibility of the BTNMMs can open exciting avenues for bio-interfaced multifunctional sensing applications both in vitro and in vivo.


Assuntos
Biomimética , Análise Espectral Raman , Análise Espectral Raman/métodos , Biofilmes
4.
Small ; 18(15): e2106887, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224852

RESUMO

Microporous mesh plasmonic devices have the potential to combine the biocompatibility of microporous polymeric meshes with the capabilities of plasmonic nanostructures to enhance nanoscale light-matter interactions for bio-interfaced optical sensing and actuation. However, scalable integration of dense and uniformly structured plasmonic hotspot arrays with microporous polymeric meshes remains challenging due to the processing incompatibility of conventional nanofabrication methods with flexible microporous substrates. Here, scalable nanofabrication of microporous multiresonant plasmonic meshes (MMPMs) is achieved via a hierarchical micro-/nanoimprint lithography approach using dissolvable polymeric templates. It is demonstrated that MMPMs can serve as broadband nonlinear nanoplasmonic devices to generate second-harmonic generation, third-harmonic generation, and upconversion photoluminescence signals with multiresonant plasmonic enhancement under fs pulse excitation. Moreover, MMPMs are employed and explored as bio-interfaced surface-enhanced Raman spectroscopy mesh sensors to enable in situ spatiotemporal molecular profiling of bacterial biofilm activity. Microporous mesh plasmonic devices open exciting avenues for bio-interfaced optical sensing and actuation applications, such as inflammation-free epidermal sensors in conformal contact with skin, combined tissue-engineering and biosensing scaffolds for in vitro 3D cell culture models, and minimally invasive implantable probes for long-term disease diagnostics and therapeutics.


Assuntos
Nanoestruturas , Nanoestruturas/química , Óptica e Fotônica , Polímeros , Impressão , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA