Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Cell Rep ; 43(7): 114450, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002129

RESUMO

Defense systems that recognize viruses provide important insights into both prokaryotic and eukaryotic innate immunity mechanisms. Such systems that restrict foreign DNA or trigger cell death have recently been recognized, but the molecular signals that activate many of these remain largely unknown. Here, we characterize one such system in pandemic Vibrio cholerae responsible for triggering cell density-dependent death (CDD) of cells in response to the presence of certain genetic elements. We show that the key component is the Lamassu DdmABC anti-phage/plasmid defense system. We demonstrate that signals that trigger CDD were palindromic DNA sequences in phages and plasmids that are predicted to form stem-loop hairpins from single-stranded DNA. Our results suggest that agents that damage DNA also trigger DdmABC activation and inhibit cell growth. Thus, any infectious process that results in damaged DNA, particularly during DNA replication, can in theory trigger DNA restriction and death through the DdmABC abortive infection system.

2.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280374

RESUMO

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Assuntos
Complemento C3 , Mucosa Intestinal , Microbiota , Animais , Humanos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neutrófilos , Complemento C3/metabolismo , Células Estromais/metabolismo
3.
Hum Vaccin Immunother ; 19(2): 2262639, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37786375

RESUMO

Schwannomas are slow-growing benign peripheral nerve sheath tumors derived from Schwann-lineage cells that develop in association with NF2-related schwannomatosis (NF2) and schwannomatosis (NF3), as well as spontaneously. Individuals affected with NF2 and NF3 have multiple schwannomas with tumors arising throughout life. Surgical resection, the standard management, is limited in scope and efficacy and is itself associated with significant morbidity. We have previously shown that direct intratumoral injection of attenuated Salmonella Typhimurium (S. Typhimurium), strain VNP20009, showed a potent anti-tumor effect in preclinical NF-2 schwannoma models. The United States Federal Drug Administration (FDA) requires that bacterial products utilized in clinical trials be produced without exposure to animal-derived-products. In this context, we developed, characterized, and tested the antitumor efficacy of an attenuated S. Typhimurium serially passaged in animal-product-free media, naming it VNP20009-AF for "VNP20009-animal-product-free." Our in vitro data did not indicate any significant changes in the viability, motility, or morphology of VNP20009-AF, compared to its parental strain. In vivo efficacy data demonstrated that VNP20009-AF and VNP20009 controlled tumor growth to the same degree in both human NF2-schwannoma xenograft and murine-NF2 schwannoma allograft models. Together, these data support the use of VNP20009-AF for the translation of bacterial schwannoma therapy into clinical trials.


Assuntos
Neurilemoma , Neoplasias Cutâneas , Humanos , Camundongos , Animais , Salmonella typhimurium , Neurilemoma/terapia
4.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778396

RESUMO

Canonically, complement is a serum-based host defense system that protects against systemic microbial invasion. Little is known about the production and function of complement components on mucosal surfaces. Here we show gut complement component 3 (C3), central to complement function, is regulated by the composition of the microbiota in healthy humans and mice, leading to host-specific gut C3 levels. Stromal cells in intestinal lymphoid follicles (LFs) are the predominant source of intestinal C3. During enteric infection with Citrobacter rodentium or enterohemorrhagic Escherichia coli, luminal C3 levels increase significantly and are required for protection. C. rodentium is remarkably more invasive to the gut epithelium of C3-deficient mice than of wild-type mice. In the gut, C3-mediated phagocytosis of C. rodentium functions to clear pathogens. Our study reveals that variations in gut microbiota determine individuals’ intestinal mucosal C3 levels, dominantly produced by LF stromal cells, which directly correlate with protection against enteric infection. Highlights: Gut complement component 3 (C3) is induced by the microbiome in healthy humans and mice at a microbiota-specific level.Gut stromal cells located in intestinal lymphoid follicles are a major source of luminal C3 During enteric infections with Citrobacter rodentium or enterohemorrhagic Escherichia coli, gut luminal C3 levels increase and are required for protection. C. rodentium is significantly more invasive of the gut epithelium in C3-deficient mice when compared to WT mice. In the gut, C3-mediated opsonophagocytosis of C. rodentium functions to clear pathogens.

5.
EBioMedicine ; 88: 104439, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36709579

RESUMO

BACKGROUND: Worldwide, Escherichia coli is the leading cause of neonatal Gram-negative bacterial meningitis, but full understanding of the pathogenesis of this disease is not yet achieved. Moreover, to date, no vaccine is available against bacterial neonatal meningitis. METHODS: Here, we used Transposon Sequencing of saturated banks of mutants (TnSeq) to evaluate E. coli K1 genetic fitness in murine neonatal meningitis. We identified E. coli K1 genes encoding for factors important for systemic dissemination and brain infection, and focused on products with a likely outer-membrane or extra-cellular localization, as these are potential vaccine candidates. We used in vitro and in vivo models to study the efficacy of active and passive immunization. RESULTS: We selected for further study the conserved surface polysaccharide Poly-ß-(1-6)-N-Acetyl Glucosamine (PNAG), as a strong candidate for vaccine development. We found that PNAG was a virulence factor in our animal model. We showed that both passive and active immunization successfully prevented and/or treated meningitis caused by E. coli K1 in neonatal mice. We found an excellent opsonophagocytic killing activity of the antibodies to PNAG and in vitro these antibodies were also able to decrease binding, invasion and crossing of E. coli K1 through two blood brain barrier cell lines. Finally, to reinforce the potential of PNAG as a vaccine candidate in bacterial neonatal meningitis, we demonstrated that Group B Streptococcus, the main cause of neonatal meningitis in developed countries, also produced PNAG and that antibodies to PNAG could protect in vitro and in vivo against this major neonatal pathogen. INTERPRETATION: Altogether, these results indicate the utility of a high-throughput DNA sequencing method to identify potential immunotherapy targets for a pathogen, including in this study a potential broad-spectrum target for prevention of neonatal bacterial infections. FUNDINGS: ANR Seq-N-Vaq, Charles Hood Foundation, Hearst Foundation, and Groupe Pasteur Mutualité.


Assuntos
Escherichia coli , Meningites Bacterianas , Animais , Camundongos , Escherichia coli/genética , Anticorpos Antibacterianos , Bactérias/genética , Imunoterapia , Sequenciamento de Nucleotídeos em Larga Escala
6.
Microbiol Resour Announc ; 12(2): e0087322, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36656017

RESUMO

Here, we announce the draft genome sequence of Vibrio parahaemolyticus strain PSU5579, isolated from a shrimp hatchery in southern Thailand during an outbreak of acute hepatopancreatic necrosis disease (AHPND). The genome contains 44 contigs with a sequence length of 5,229,426 bp, 4,861 coding sequences, and a G+C content of 45.3%.

7.
Proc Natl Acad Sci U S A ; 120(4): e2219679120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649429

RESUMO

The emergence of multidrug-resistant bacterial pathogens is a growing threat to global public health. Here, we report the development and characterization of a panel of nine-amino acid residue synthetic peptides that display potent antibacterial activity and the ability to disrupt preestablished microbial biofilms. The lead peptide (Peptide K6) showed bactericidal activity against Pseudomonas aeruginosa and Staphylococcus aureus in culture and in monocultures and mixed biofilms in vitro. Biophysical analysis revealed that Peptide K6 self-assembled into nanostructured micelles that correlated with its strong antibiofilm activity. When surface displayed on the outer membrane protein LamB, two copies of the Peptide K6 were highly bactericidal to Escherichia coli. Peptide K6 rapidly increased the permeability of bacterial cells, and resistance to this toxic peptide occurred less quickly than that to the potent antibiotic gentamicin. Furthermore, we found that Peptide K6 was safe and effective in clearing mixed P. aeruginosa-S. aureus biofilms in a mouse model of persistent infection. Taken together, the properties of Peptide K6 suggest that it is a promising antibiotic candidate and that design of additional short peptides that form micelles represents a worthwhile approach for the development of antimicrobial agents.


Assuntos
Antibacterianos , Coinfecção , Animais , Camundongos , Antibacterianos/farmacologia , Micelas , Staphylococcus aureus , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Biofilmes , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
8.
PLoS One ; 17(7): e0270276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895734

RESUMO

SARS-CoV-2 is one of three recognized coronaviruses (CoVs) that have caused epidemics or pandemics in the 21st century and that likely emerged from animal reservoirs. Differences in nucleotide and protein sequence composition within related ß-coronaviruses are often used to better understand CoV evolution, host adaptation, and their emergence as human pathogens. Here we report the comprehensive analysis of amino acid residue changes that have occurred in lineage B ß-coronaviruses that show covariance with each other. This analysis revealed patterns of covariance within conserved viral proteins that potentially define conserved interactions within and between core proteins encoded by SARS-CoV-2 related ß-coronaviruses. We identified not only individual pairs but also networks of amino acid residues that exhibited statistically high frequencies of covariance with each other using an independent pair model followed by a tandem model approach. Using 149 different CoV genomes that vary in their relatedness, we identified networks of unique combinations of alleles that can be incrementally traced genome by genome within different phylogenic lineages. Remarkably, covariant residues and their respective regions most abundantly represented are implicated in the emergence of SARS-CoV-2 and are also enriched in dominant SARS-CoV-2 variants.


Assuntos
COVID-19 , Evolução Molecular , SARS-CoV-2 , Aminoácidos/genética , Animais , COVID-19/virologia , Genoma Viral , Humanos , SARS-CoV-2/genética
9.
Proc Natl Acad Sci U S A ; 119(24): e2202719119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675425

RESUMO

Schwannomas are slow-growing benign neoplasms that develop throughout the body causing pain, sensory/motor dysfunction, and death. Because bacterial immunotherapy has been used in the treatment of some malignant neoplasms, we evaluated attenuated Salmonella typhimurium strains as immunotherapies for benign murine schwannomas. Several bacterial strains were tested, including VNP20009, a highly attenuated strain that was previously shown to be safe in human subjects with advanced malignant neoplasms, and a VNP20009 mutant that was altered in motility and other properties that included adherence and invasion of cultured mammalian cells. VNP20009 controlled tumor growth in two murine schwannoma models and induced changes in cytokine and immune effector cell profiles that were consistent with induction of enhanced innate and adaptive host immune responses compared with controls. Intratumoral (i.t.) injection of S. typhimurium led to tumor cell apoptosis, decreased tumor angiogenesis, and lower growth of the injected schwannoma tumors. Invasive VNP20009 was significantly more efficacious than was a noninvasive derivative in controlling the growth of injected tumors. Bacterial treatment apparently induced systemic antitumor immunity in that the growth of rechallenge schwannomas implanted following primary bacterial treatment was also reduced. Checkpoint programmed death-1 (PD-1) blockade induced by systemic administration of anti-PD-1 antibodies controlled tumor growth to the same degree as i.t. injection of S. typhimurium, and together, these two therapies had an additive effect on suppressing schwannoma growth. These experiments represent validation of a bacterial therapy for a benign neoplasm and support development of S. typhimurium VNP20009, potentially in combination with PD-1 inhibition, as a schwannoma immunotherapy.


Assuntos
Imunoterapia , Neurilemoma , Salmonella typhimurium , Animais , Apoptose , Humanos , Imunoterapia/métodos , Injeções Intralesionais , Camundongos , Neoplasias Experimentais/terapia , Neurilemoma/terapia , Receptor de Morte Celular Programada 1 , Salmonella typhimurium/genética
10.
Toxins (Basel) ; 14(3)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35324722

RESUMO

Vibrio cholerae uses cholera toxin (CT) to cause cholera, a severe diarrheal disease in humans that can lead to death within hours of the onset of symptoms. The catalytic activity of CT in target epithelial cells increases cellular levels of 3',5'-cyclic AMP (cAMP), leading to the activation of the cystic fibrosis transmembrane conductance regulator (CFTR), an apical ion channel that transports chloride out of epithelial cells, resulting in an electrolyte imbalance in the intestinal lumen and massive water loss. Here we report that when administered perorally, benzopyrimido-pyrrolo-oxazinedione, (R)-BPO-27), a potent small molecule inhibitor of CFTR, blocked disease symptoms in a mouse model for acute diarrhea caused by toxigenic V. cholerae. We show that both (R)-BPO-27 and its racemic mixture, (R/S)-BPO-27, are able to protect mice from CT-dependent diarrheal disease and death. Furthermore, we show that, consistent with the ability of the compound to block the secretory diarrhea induced by CT, BPO-27 has a measurable effect on suppressing the gut replication and survival of V. cholerae, including a 2010 isolate from Haiti that is representative of the most predominant 'variant strains' that are causing epidemic and pandemic cholera worldwide. Our results suggest that BPO-27 should advance to human Phase I studies that could further address its safety and efficacy as therapeutic or preventative drug intervention for diarrheal syndromes, including cholera, that are mediated by CFTR channel activation.


Assuntos
Cólera , Vibrio cholerae , Animais , Cólera/tratamento farmacológico , Toxina da Cólera/uso terapêutico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/uso terapêutico , Diarreia/tratamento farmacológico , Camundongos , Morbidade , Vibrio cholerae/metabolismo
11.
bioRxiv ; 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35169805

RESUMO

SARS-CoV-2 is one of three recognized coronaviruses (CoVs) that have caused epidemics or pandemics in the 21st century and that likely emerged from animal reservoirs. Differences in nucleotide and protein sequence composition within related ß-coronaviruses are often used to better understand CoV evolution, host adaptation, and their emergence as human pathogens. Here we report the comprehensive analysis of amino acid residue changes that have occurred in lineage B ß-coronaviruses that show covariance with each other. This analysis revealed patterns of covariance within conserved viral proteins that potentially define conserved interactions within and between core proteins encoded by SARS-CoV-2 related ß-coranaviruses. We identified not only individual pairs but also networks of amino acid residues that exhibited statistically high frequencies of covariance with each other using an independent pair model followed by a tandem model approach. Using 149 different CoV genomes that vary in their relatedness, we identified networks of unique combinations of alleles that can be incrementally traced genome by genome within different phylogenic lineages. Remarkably, covariant residues and their respective regions most abundantly represented are implicated in the emergence of SARS-CoV-2 are also enriched in dominant SARS-CoV-2 variants.

12.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161288

RESUMO

The type 6 secretion system (T6SS) is a bacterial weapon broadly distributed in gram-negative bacteria and used to kill competitors and predators. Featuring a long and double-tubular structure, this molecular machine is energetically costly to produce and thus is likely subject to diverse regulation strategies that are largely ill defined. In this study, we report a quantity-sensing control of the T6SS that down-regulates the expression of secreted components when they accumulate in the cytosol due to T6SS inactivation. Using Vibrio cholerae strains that constitutively express an active T6SS, we demonstrate that mRNA levels of secreted components, including the inner-tube protein component Hcp, were down-regulated in T6SS structural gene mutants while expression of the main structural genes remained unchanged. Deletion of both hcp gene copies restored expression from their promoters, while Hcp overexpression negatively impacted expression. We show that Hcp directly interacts with the RpoN-dependent T6SS regulator VasH, and deleting the N-terminal regulator domain of VasH abolishes this interaction as well as the expression difference of hcp operons between T6SS-active and inactive strains. We find that negative regulation of hcp also occurs in other V. cholerae strains and the pathogens Aeromonas dhakensis and Pseudomonas aeruginosa This Hcp-dependent sensing control is likely an important energy-conserving mechanism that enables T6SS-encoding organisms to quickly adjust T6SS expression and prevent wasteful build-up of its major secreted components in the absence of their efficient export out of the bacterial cell.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/metabolismo , Espaço Intracelular/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/química , Citoplasma/metabolismo , Regulação para Baixo , Retroalimentação Fisiológica , Modelos Biológicos , Filogenia , Domínios Proteicos
13.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443205

RESUMO

The type 6 secretion system (T6SS) is a dynamic organelle encoded by many gram-negative bacteria that can be used to kill competing bacterial prey species in densely occupied niches. Some predatory species, such as Vibrio cholerae, use their T6SS in an untargeted fashion while in contrast, Pseudomonas aeruginosa assembles and fires its T6SS apparatus only after detecting initial attacks by other bacterial prey cells; this targeted attack strategy has been termed the T6SS tit-for-tat response. Molecules that interact with the P. aeruginosa outer membrane such as polymyxin B can also trigger assembly of T6SS organelles via a signal transduction pathway that involves protein phosphorylation. Recent work suggests that a phospholipase T6SS effector (TseL) of V. cholerae can induce T6SS dynamic activity in P. aeruginosa when delivered to or expressed in the periplasmic space of this organism. Here, we report that inhibiting expression of essential genes involved in outer membrane biogenesis can also trigger T6SS activation in P. aeruginosa Specifically, we developed a CRISPR interference (CRISPRi) system to knock down expression of bamA, tolB, and lptD and found that these knockdowns activated T6SS activity. This increase in T6SS activity was dependent on the same signal transduction pathway that was previously shown to be required for the tit-for-tat response. We conclude that outer membrane perturbation can be sensed by P. aeruginosa to activate the T6SS even when the disruption is generated by aberrant cell envelope biogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Sistemas CRISPR-Cas , Membrana Celular/metabolismo , Genes Essenciais/fisiologia , Proteínas Periplásmicas/metabolismo , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo VI/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Membrana Celular/genética , Membrana Celular/patologia , Sobrevivência Celular/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Genes Essenciais/genética , Genótipo , Proteínas Periplásmicas/genética , Fenótipo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo , RNA-Seq , Transdução de Sinais/genética , Estresse Fisiológico , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento
14.
mBio ; 11(6)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33234688

RESUMO

Vibrio cholerae is a globally important pathogen responsible for the severe epidemic diarrheal disease called cholera. The current and ongoing seventh pandemic of cholera is caused by El Tor strains, which have completely replaced the sixth-pandemic classical strains of V. cholerae To successfully establish infection and disseminate to new victims, V. cholerae relies on key virulence factors encoded on horizontally acquired genetic elements. The expression of these factors relies on the regulatory architecture that coordinates the timely expression of virulence determinants during host infection. Here, we apply transcriptomics and structural modeling to understand how type VI secretion system regulator A (TsrA) affects gene expression in both the classical and El Tor biotypes of V. cholerae We find that TsrA acts as a negative regulator of V. cholerae virulence genes encoded on horizontally acquired genetic elements. The TsrA regulon comprises genes encoding cholera toxin (CT), the toxin-coregulated pilus (TCP), and the type VI secretion system (T6SS), as well as genes involved in biofilm formation. The majority of the TsrA regulon is carried on horizontally acquired AT-rich genetic islands whose loss or acquisition could be directly ascribed to the differences between the classical and El Tor strains studied. Our modeling predicts that the TsrA protein is a structural homolog of the histone-like nucleoid structuring protein (H-NS) oligomerization domain and is likely capable of forming higher-order superhelical structures, potentially with DNA. These findings describe how TsrA can integrate into the intricate V. cholerae virulence gene expression program, controlling gene expression through transcriptional silencing.IMPORTANCE Pathogenic Vibrio cholerae strains express multiple virulence factors that are encoded by bacteriophage and chromosomal islands. These include cholera toxin and the intestinal colonization pilus called the toxin-coregulated pilus, which are essential for causing severe disease in humans. However, it is presently unclear how the expression of these horizontally acquired accessory virulence genes can be efficiently integrated with preexisting transcriptional programs that are presumably fine-tuned for optimal expression in V. cholerae before its conversion to a human pathogen. Here, we report the role of a transcriptional regulator (TsrA) in silencing horizontally acquired genes encoding important virulence factors. We propose that this factor could be critical to the efficient acquisition of accessory virulence genes by silencing their expression until other signals trigger their transcriptional activation within the host.


Assuntos
Toxina da Cólera/metabolismo , Cólera/microbiologia , Regulação Bacteriana da Expressão Gênica , Vibrio cholerae/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxina da Cólera/química , Toxina da Cólera/genética , Perfilação da Expressão Gênica , Inativação Gênica , Ilhas Genômicas , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Moleculares , Conformação Proteica , Fatores de Transcrição/metabolismo , Virulência/genética , Fatores de Virulência/genética
15.
Proc Natl Acad Sci U S A ; 117(44): 27502-27508, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087577

RESUMO

Cyclic dinucleotides (CDNs) are secondary messengers used by prokaryotic and eukaryotic cells. In mammalian cells, cytosolic CDNs bind STING (stimulator of IFN gene), resulting in the production of type I IFN. Extracellular CDNs can enter the cytosol through several pathways but how CDNs work from outside eukaryotic cells remains poorly understood. Here, we elucidate a mechanism of action on intestinal epithelial cells for extracellular CDNs. We found that CDNs containing adenosine induced a robust CFTR-mediated chloride secretory response together with cAMP-mediated inhibition of Poly I:C-stimulated IFNß expression. Signal transduction was strictly polarized to the serosal side of the epithelium, dependent on the extracellular and sequential hydrolysis of CDNs to adenosine by the ectonucleosidases ENPP1 and CD73, and occurred via activation of A2B adenosine receptors. These studies highlight a pathway by which microbial and host produced extracellular CDNs can regulate the innate immune response of barrier epithelial cells lining mucosal surfaces.


Assuntos
Adenosina/metabolismo , Células Epiteliais/metabolismo , Imunidade Inata , Imunidade nas Mucosas , Nucleotídeos Cíclicos/metabolismo , 5'-Nucleotidase/metabolismo , Linhagem Celular Tumoral , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Interferon beta/metabolismo , Mucosa Intestinal/citologia , Diester Fosfórico Hidrolases/metabolismo , Poli I-C/imunologia , Pirofosfatases/metabolismo , Receptor A2B de Adenosina/metabolismo , Transdução de Sinais/imunologia
16.
bioRxiv ; 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32577639

RESUMO

SARS-CoV-2 is one of three recognized coronaviruses (CoVs) that have caused epidemics or pandemics in the 21 st century and that have likely emerged from animal reservoirs based on genomic similarities to bat and other animal viruses. Here we report the analysis of conserved interactions between amino acid residues in proteins encoded by SARS-CoV-related viruses. We identified pairs and networks of residue variants that exhibited statistically high frequencies of covariance with each other. While these interactions are likely key to both protein structure and other protein-protein interactions, we have also found that they can be used to provide a new computational approach (CoVariance-based Phylogeny Analysis) for understanding viral evolution and adaptation. Our data provide evidence that the evolutionary processes that converted a bat virus into human pathogen occurred through recombination with other viruses in combination with new adaptive mutations important for entry into human cells.

17.
Cell ; 182(1): 38-49.e17, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32544385

RESUMO

cGAS/DncV-like nucleotidyltransferase (CD-NTase) enzymes are immune sensors that synthesize nucleotide second messengers and initiate antiviral responses in bacterial and animal cells. Here, we discover Enterobacter cloacae CD-NTase-associated protein 4 (Cap4) as a founding member of a diverse family of >2,000 bacterial receptors that respond to CD-NTase signals. Structures of Cap4 reveal a promiscuous DNA endonuclease domain activated through ligand-induced oligomerization. Oligonucleotide recognition occurs through an appended SAVED domain that is an unexpected fusion of two CRISPR-associated Rossman fold (CARF) subunits co-opted from type III CRISPR immunity. Like a lock and key, SAVED effectors exquisitely discriminate 2'-5'- and 3'-5'-linked bacterial cyclic oligonucleotide signals and enable specific recognition of at least 180 potential nucleotide second messenger species. Our results reveal SAVED CARF family proteins as major nucleotide second messenger receptors in CBASS and CRISPR immune defense and extend the importance of linkage specificity beyond mammalian cGAS-STING signaling.


Assuntos
Bactérias/virologia , Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Imunidade , Oligonucleotídeos/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Desoxirribonuclease I/metabolismo , Ligantes , Mutagênese/genética , Nucleotidiltransferases/metabolismo , Ligação Proteica , Sistemas do Segundo Mensageiro
18.
Mol Cell ; 77(4): 723-733.e6, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31932164

RESUMO

Bacteria possess an array of defenses against foreign invaders, including a broadly distributed bacteriophage defense system termed CBASS (cyclic oligonucleotide-based anti-phage signaling system). In CBASS systems, a cGAS/DncV-like nucleotidyltransferase synthesizes cyclic di- or tri-nucleotide second messengers in response to infection, and these molecules activate diverse effectors to mediate bacteriophage immunity via abortive infection. Here, we show that the CBASS effector NucC is related to restriction enzymes but uniquely assembles into a homotrimer. Binding of NucC trimers to a cyclic tri-adenylate second messenger promotes assembly of a NucC homohexamer competent for non-specific double-strand DNA cleavage. In infected cells, NucC activation leads to complete destruction of the bacterial chromosome, causing cell death prior to completion of phage replication. In addition to CBASS systems, we identify NucC homologs in over 30 type III CRISPR/Cas systems, where they likely function as accessory nucleases activated by cyclic oligoadenylate second messengers synthesized by these systems' effector complexes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Escherichia coli/virologia , Regulação Alostérica , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Sistemas CRISPR-Cas , Clivagem do DNA , Enzimas de Restrição do DNA/química , Escherichia coli/enzimologia , Escherichia coli/imunologia , Genoma Viral , Multimerização Proteica , Sistemas do Segundo Mensageiro
19.
Nature ; 577(7791): 543-548, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915378

RESUMO

Although maternal antibodies protect newborn babies from infection1,2, little is known about how protective antibodies are induced without prior pathogen exposure. Here we show that neonatal mice that lack the capacity to produce IgG are protected from infection with the enteric pathogen enterotoxigenic Escherichia coli by maternal natural IgG antibodies against the maternal microbiota when antibodies are delivered either across the placenta or through breast milk. By challenging pups that were fostered by either maternal antibody-sufficient or antibody-deficient dams, we found that IgG derived from breast milk was crucial for protection against mucosal disease induced by enterotoxigenic E. coli. IgG also provides protection against systemic infection by E. coli. Pups used the neonatal Fc receptor to transfer IgG from milk into serum. The maternal commensal microbiota can induce antibodies that recognize antigens expressed by enterotoxigenic E. coli and other Enterobacteriaceae species. Induction of maternal antibodies against a commensal Pantoea species confers protection against enterotoxigenic E. coli in pups. This role of the microbiota in eliciting protective antibodies to a specific neonatal pathogen represents an important host defence mechanism against infection in neonates.


Assuntos
Anticorpos/imunologia , Escherichia coli Enterotoxigênica/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Imunidade Materno-Adquirida/imunologia , Recém-Nascido/imunologia , Microbiota/imunologia , Leite Humano/imunologia , Animais , Anticorpos/sangue , Anticorpos/metabolismo , Aleitamento Materno , Reações Cruzadas/imunologia , Infecções por Escherichia coli/microbiologia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Masculino , Camundongos , Mães , Pantoea/imunologia , Receptores Fc/imunologia , Receptores Fc/metabolismo , Simbiose/imunologia
20.
PLoS Negl Trop Dis ; 14(1): e0007912, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905228

RESUMO

BACKGROUND: Typhoid fever remains a significant cause of morbidity and mortality in developing countries especially in children ≤5 years old. Although the widely available unconjugated Vi polysaccharide vaccines are efficacious, they confer limited, short-term protection and are not approved for young children or infants. Vi conjugate vaccines, however, are now licensed in several typhoid endemic countries for use in children >6 months of age. As an alternative to conjugate vaccines, Matrivax has applied its novel 'virtual conjugation' Protein Capsular Matrix Vaccine (PCMV) technology to manufacture Typhax, which is composed of Vi polysaccharide entrapped in a cross-linked CRM197 matrix. METHODOLOGY: A randomized, double-blinded, dose escalating Phase 1 study was performed to compare the safety and immunogenicity of three dose levels of aluminum phosphate adjuvanted Typhax (0.5, 2.5, or 10 µg of Vi antigen) to the FDA licensed vaccine, Typhim Vi, and placebo. Groups of 15 healthy adult subjects aged 18 to 55 years were randomized and received Typhax, Typhim Vi, or placebo at a ratio of 9:3:3. Typhax and placebo were administered in a two-dose regimen (Days 0 and 28) while Typhim Vi was administered as a single-dose on Day 0 with a placebo administered on Day 28. All doses were administered as a 0.5 mL intramuscular (IM) injection in a blinded fashion. The anti-Vi IgG antibody response was determined preimmunization (Day 0) and on Days 14, 28, 42, and 180 by ELISA. Seroconversion was defined as a titer 4-fold or greater above baseline. PRINCIPAL FINDINGS: All Typhax vaccine regimens were well tolerated and adverse events were low in number and primarily characterized as mild in intensity and similar in incidence across the treatment groups. Reactogenicity, primarily pain and tenderness at the injection site, was observed in both the Typhax and Typhim Vi treatment groups; a modest increase in incidence was observed with increasing Typhax doses. Following one dose of Typhax, seroconversion rates at day 28 were 12.5%, 77.8%, 66.7% at the 0.5, 2.5, and 10 µg dose levels, respectively, compared to 55.6% and 0% in the Typhim Vi and placebo groups, respectively. A second dose of Typhax on Day 28 did not elicit a significant increase in GMT or seroconversion at Day 42 or Day 180 at any dose level. CONCLUSIONS: Collectively, the results from this randomized phase 1 clinical trial indicate that Typhax is safe, well tolerated, and immunogenic. After a single dose, Typhax at the 2.5 and 10 µg dose levels elicited comparable anti-Vi IgG titers and seroconversion rates as a single dose of Typhim Vi (25 µg dose). A second dose of Typhax at Day 28 did not elicit a booster response. TRIAL REGISTRATION: ClinicalTrials.gov NCT03926455.


Assuntos
Imunogenicidade da Vacina , Febre Tifoide/prevenção & controle , Vacinas Tíficas-Paratíficas/imunologia , Adulto , Anticorpos Antibacterianos/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Polissacarídeos Bacterianos/administração & dosagem , Polissacarídeos Bacterianos/efeitos adversos , Polissacarídeos Bacterianos/imunologia , Salmonella typhi , Soroconversão , Vacinas Tíficas-Paratíficas/administração & dosagem , Vacinas Tíficas-Paratíficas/efeitos adversos , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/efeitos adversos , Vacinas Conjugadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...