Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech Eng ; 146(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37831143

RESUMO

Mechanical circulatory support (MCS) device therapy is one of the primary treatment options for end-stage heart failure (HF), whereby a mechanical pump is integrated with the failing heart to maintain adequate tissue perfusion. The ISO 14708-5:2020 standard prescribes generic guidelines for nonclinical device evaluation and system performance testing of MCS devices using a mock circulatory loop (MCL). However, the utility of MCLs in premarket regulatory submissions of MCS devices is ambiguous, and the specific disease states that the device is intended to treat are not usually simulated. Hence, we aim to outline the potential of MCLs as a valuable regulatory science tool for characterizing MCS device systems by adequately representing target clinical-use HF conditions on the bench. Target pathophysiologic hemodynamics of HF conditions (i.e., cardiogenic shock (CS), left ventricular (LV) hypertrophy secondary to hypertension, and coronary artery disease), along with a healthy adult at rest and a healthy adult during exercise are provided as recommended test conditions. The conditions are characterized based on LV, aorta, and left atrium pressures using recommended cardiac hemodynamic indices such as systolic, diastolic, and mean arterial pressure, mean cardiac output (CO), cardiac cycle time, and systemic vascular resistance. This study is a first step toward standardizing MCLs to generate well-defined target HF conditions used to evaluate MCS devices.


Assuntos
Sistema Cardiovascular , Insuficiência Cardíaca , Coração Auxiliar , Humanos , Adulto , Hemodinâmica/fisiologia , Coração , Insuficiência Cardíaca/terapia
2.
Cells Tissues Organs ; 212(3): 272-284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35344966

RESUMO

Continuous flow ventricular assist device (CFVAD) support in advanced heart failure patients causes diminished pulsatility, which has been associated with adverse events including gastrointestinal bleeding, end organ failure, and arteriovenous malformation. Recently, pulsatility augmentation by pump speed modulation has been proposed as a means to minimize adverse events. Pulsatility primarily affects endothelial and smooth muscle cells in the vasculature. To study the effects of pulsatility and pulse modulation using CFVADs, we have developed a microfluidic co-culture model with human aortic endothelial (ECs) and smooth muscle cells (SMCs) that can replicate physiologic pressures, flows, shear stresses, and cyclical stretch. The effects of pulsatility and pulse frequency on ECs and SMCs were evaluated during (1) normal pulsatile flow (120/80 mmHg, 60 bpm), (2) diminished pulsatility (98/92 mmHg, 60 bpm), and (3) low cyclical frequency (115/80 mmHg, 30 bpm). Shear stresses were estimated using computational fluid dynamics (CFD) simulations. While average shear stresses (4.2 dynes/cm2) and flows (10.1 mL/min) were similar, the peak shear stresses for normal pulsatile flow (16.9 dynes/cm2) and low cyclic frequency (19.5 dynes/cm2) were higher compared to diminished pulsatility (6.45 dynes/cm2). ECs and SMCs demonstrated significantly lower cell size with diminished pulsatility compared to normal pulsatile flow. Low cyclical frequency resulted in normalization of EC cell size but not SMCs. SMCs size was higher with low frequency condition compared to diminished pulsatility but did not normalize to normal pulsatility condition. These results may suggest that pressure amplitude augmentation may have a greater effect in normalizing ECs, while both pressure amplitude and frequency may be required to normalize SMCs morphology. The co-culture model may be an ideal platform to study flow modulation strategies.


Assuntos
Coração Auxiliar , Humanos , Técnicas de Cocultura , Miócitos de Músculo Liso
3.
Commun Biol ; 5(1): 934, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085302

RESUMO

There is need for a reliable in vitro system that can accurately replicate the cardiac physiological environment for drug testing. The limited availability of human heart tissue culture systems has led to inaccurate interpretations of cardiac-related drug effects. Here, we developed a cardiac tissue culture model (CTCM) that can electro-mechanically stimulate heart slices with physiological stretches in systole and diastole during the cardiac cycle. After 12 days in culture, this approach partially improved the viability of heart slices but did not completely maintain their structural integrity. Therefore, following small molecule screening, we found that the incorporation of 100 nM tri-iodothyronine (T3) and 1 µM dexamethasone (Dex) into our culture media preserved the microscopic structure of the slices for 12 days. When combined with T3/Dex treatment, the CTCM system maintained the transcriptional profile, viability, metabolic activity, and structural integrity for 12 days at the same levels as the fresh heart tissue. Furthermore, overstretching the cardiac tissue induced cardiac hypertrophic signaling in culture, which provides a proof of concept for the ability of the CTCM to emulate cardiac stretch-induced hypertrophic conditions. In conclusion, CTCM can emulate cardiac physiology and pathophysiology in culture for an extended time, thereby enabling reliable drug screening.


Assuntos
Biomimética , Coração , Cardiomegalia , Meios de Cultura , Humanos , Sístole
4.
Cardiovasc Eng Technol ; 13(1): 170-180, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34402037

RESUMO

PURPOSE: Drug induced cardiac toxicity is a disruption of the functionality of cardiomyocytes which is highly correlated to the organization of the subcellular structures. We can analyze cellular structures by utilizing microscopy imaging data. However, conventional image analysis methods might miss structural deteriorations that are difficult to perceive. Here, we propose an image-based deep learning pipeline for the automated quantification of drug induced structural deteriorations using a 3D heart slice culture model. METHODS: In our deep learning pipeline, we quantify the induced structural deterioration from three anticancer drugs (doxorubicin, sunitinib, and herceptin) with known adverse cardiac effects. The proposed deep learning framework is composed of three convolutional neural networks that process three different image sizes. The results of the three networks are combined to produce a classification map that shows the locations of the structural deteriorations in the input cardiac image. RESULTS: The result of our technique is the capability of producing classification maps that accurately detect drug induced structural deterioration on the pixel level. CONCLUSION: This technology could be widely applied to perform unbiased quantification of the structural effect of the cardiotoxins on heart slices.


Assuntos
Inteligência Artificial , Miócitos Cardíacos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
5.
Front Pharmacol ; 12: 617922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613292

RESUMO

Translational research in the cardiovascular field is hampered by the unavailability of cardiac models that can recapitulate organ-level physiology of the myocardium. Outside the body, cardiac tissue undergoes rapid dedifferentiation and maladaptation in culture. There is an ever-growing demand for preclinical platforms that allow for accurate, standardized, long-term, and rapid drug testing. Heart slices is an emerging technology that solves many of the problems with conventional myocardial culture systems. Heart slices are thin (<400 µm) slices of heart tissue from the adult ventricle. Several recent studies using heart slices have shown their ability to maintain the adult phenotype for prolonged periods in a multi cell-type environment. Here, we review the current status of cardiac culture systems and highlight the unique advantages offered by heart slices in the light of recent efforts in developing physiologically relevant heart slice culture systems.

6.
Toxicol Appl Pharmacol ; 406: 115213, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877659

RESUMO

The limited availability of human heart tissue and its complex cell composition are major limiting factors for the reliable testing of drug efficacy and toxicity. Recently, we developed functional human and pig heart slice biomimetic culture systems that preserve the viability and functionality of 300 µm heart slices for up to 6 days. Here, we tested the reliability of this culture system for testing the cardiotoxicity of anti-cancer drugs. We tested three anti-cancer drugs (doxorubicin, trastuzumab, and sunitinib) with known different mechanisms of cardiotoxicity at three concentrations and assessed the effect of these drugs on heart slice viability, structure, function and gene expression. Slices incubated with any of these drugs for 48 h showed diminished in viability as well as loss of cardiomyocyte structure and function. Mechanistically, RNA sequencing of doxorubicin-treated tissues demonstrated a significant downregulation of cardiac genes and upregulation of oxidative stress responses. Trastuzumab treatment downregulated cardiac muscle contraction-related genes consistent with its clinically known effect on cardiomyocytes. Interestingly, sunitinib treatment resulted in significant downregulation of angiogenesis-related genes, in line with its mechanism of action. Similar to hiPS-derived-cardiomyocytes, heart slices recapitulated the expected toxicity of doxorubicin and trastuzumab, however, slices were superior in detecting sunitinib cardiotoxicity and mechanism in the clinically relevant concentration range of 0.1-1 µM. These results indicate that heart slice culture models have the potential to become a reliable platform for testing and elucidating mechanisms of drug cardiotoxicity.


Assuntos
Cardiotoxicidade , Cardiotoxinas/efeitos adversos , Coração/efeitos dos fármacos , Modelos Biológicos , Técnicas de Cultura de Tecidos , Adulto , Idoso , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Feminino , Coração/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Pessoa de Meia-Idade , Suínos , Trastuzumab/efeitos adversos
7.
J Vis Exp ; (157)2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32250357

RESUMO

Many novel drugs fail in clinical studies due to cardiotoxic side effects as the currently available in vitro assays and in vivo animal models poorly predict human cardiac liabilities, posing a multi-billion-dollar burden on the pharmaceutical industry. Hence, there is a worldwide unmet medical need for better approaches to identify drug cardiotoxicity before undertaking costly and time consuming 'first in man' trials. Currently, only immature cardiac cells (human induced pluripotent stem cell-derived cardiomyocytes [hiPSC-CMs]) are used to test therapeutic efficiency and drug toxicity as they are the only human cardiac cells that can be cultured for prolonged periods required to test drug efficacy and toxicity. However, a single cell type cannot replicate the phenotype of the complex 3D heart tissue which is formed of multiple cell types. Importantly, the effect of drugs needs to be tested on adult cardiomyocytes, which have different characteristics and toxicity responses compared to immature hiPSC-CMs. Culturing human heart slices is a promising model of intact human myocardium. This technology provides access to a complete multicellular system that mimics the human heart tissue and reflects the physiological or pathological conditions of the human myocardium. Recently, through optimization of the culture media components and the culture conditions to include continuous electrical stimulation at 1.2 Hz and intermittent oxygenation of the culture medium, we developed a new culture system setup that preserves viability and functionality of human and pig heart slices for 6 days in culture. In the current protocol, we are detailing the method for slicing and culturing pig heart as an example. The same protocol is used to culture slices from human, dog, sheep, or cat hearts. This culture system has the potential to become a powerful predictive human in situ model for acute cardiotoxicity testing that closes the gap between preclinical and clinical testing results.


Assuntos
Cardiotoxicidade , Coração/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Animais , Células Cultivadas , Humanos , Modelos Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ovinos , Suínos
8.
IEEE Trans Biomed Eng ; 67(4): 1050-1060, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31329102

RESUMO

OBJECTIVE: Continuous Flow Left Ventricular Assist Devices (CFLVAD) are circulatory support devices that are implanted in patients with end-stage heart failure. We developed a novel control algorithm for CFLVAD to maintain physiologic perfusion while avoiding ventricular suction using only the intrinsic pump measurement of pump speed and without utilizing model-based estimation. METHODS: The controller objective is to maintain a differential pump speed setpoint. A mathematical model of the circulatory system coupled with a model of a CFLVAD was used to test the control algorithm in silico. Robustness and efficacy were evaluated by comparing the proposed control algorithm to constant speed control, differential pump pressure control, mean aortic pressure control, and ventricular end diastolic pressure control during (1) rest and exercise conditions, (2) a rapid eight-fold increase in pulmonary vascular resistance under rest and exercise, (3) transitions from rest to exercise, and exercise to rest, (4) safe mode during left ventricular asystole, and (5) RPM measurement noise of 1% to 10% for (1) to (4). RESULTS AND CONCLUSION: The control algorithm provided adequate perfusion while preventing ventricular suction for all test conditions. Performance did not deteriorate significantly with pump speed measurement noise of up to 6%. The safe mode successfully detected asystole and maintained adequate perfusion to sustain life even when the differential pump speed was low. SIGNIFICANCE: Maintaining a constant differential pump speed can simultaneously achieve physiologic perfusion and suction prevention without needing unreliable, direct measurements of flow or pressure, or complex parameter or model-based estimation techniques.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Insuficiência Cardíaca/terapia , Ventrículos do Coração , Humanos , Modelos Cardiovasculares , Pressão Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...