Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(16): E43-E50, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706888

RESUMO

The optical-fiber-based dosimeter of the LUMINA project was deployed in August 2021 in the International Space Station in the framework of the Alpha mission. The sensing elements of the dosimeter are P-doped optical fibers, which were proven to be excellent candidates for dosimetry applications. The twofold objective of this paper is to provide a theoretical model for the radiation response of the dosimeter and to report on the experimental work carried out at CERN for the qualification and calibration of the engineering model of the LUMINA dosimeter. Combining the theoretical response and experimental data, the calibration curve of the flight model is obtained. Finally, this study broadens the investigation of the room temperature radiation response of P-doped optical fibers in a range of dose rates 104 times lower than previously reported, from 21µGy(SiO2)/h to145mGy(SiO2)/h.

2.
Sensors (Basel) ; 20(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806664

RESUMO

The potential of fiber-based sensors to monitor the fluence of atmospheric neutrons is evaluated through accelerated tests at the TRIUMF Neutron Facility (TNF) (BC, Canada), offering a flux approximatively 109 higher than the reference spectrum observed under standard conditions in New York City, USA. The radiation-induced attenuation (RIA) at 1625 nm of a phosphorus-doped radiation sensitive optical fiber is shown to linearly increase with neutron fluence, allowing an in situ and easy monitoring of the neutron flux and fluence at this facility. Furthermore, our experiments show that the fiber response remains sensitive to the ionization processes, at least up to a fluence of 7.1 × 1011 n cm-², as its radiation sensitivity coefficient (~3.36 dB km-1 Gy-1) under neutron exposure remains very similar to the one measured under X-rays (~3.8 dB km-1 Gy-1) at the same wavelength. The presented results open the way to the development of a point-like or even a distributed dosimeter for natural or man-made neutron-rich environments. The feasibility to measure the dose caused by the neutron exposure during stratospheric balloon experiments, or during outer space missions, is presented as a case study of a potential future application.

3.
Sensors (Basel) ; 18(7)2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022012

RESUMO

This paper review presents Single Event Effects (SEE) irradiation tests under heavy ions of the test-chip of D-Flip-Flop (DFF) cells and complete readout integrated circuits (ROIC) as a function of temperature, down to 50 K. The analyses of the experimental data are completed using the SEE prediction tool MUSCA SEP3. The conclusions derived from the experimental measurements and related analyses allow to update the current SEE radiation hardness assurance (RHA) for readout integrated circuits of infrared image sensors used at cryogenic temperatures. The current RHA update is performed on SEE irradiation tests at room temperature, as opposed to the operational cryogenic temperature. These tests include SET (Single Event Transient), SEU (Single Event Upset) and SEFI (Single Event Functional Interrupt) irradiation tests. This update allows for reducing the cost of ROIC qualifications and the test setup complexity for each space mission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...