Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; (2): 240-8, 2007 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-17180192

RESUMO

In this study the coordination structure and chemistry of Eu(III) and Cm(III) in the ionic liquid C(4)mimTf(2)N (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) was investigated by time-resolved laser fluorescence spectroscopy (TRLFS). The dissolution of 1 x 10(-2) M Eu(CF(3)SO(3))(3) and 1 x 10(-7) M Cm(ClO(4))(3) in C(4)mimTf(2)N leads to the formation of two species for each cation with fluorescence emission lifetimes of 2.5 +/- 0.2 ms and 1.0 +/- 0.3 ms for the Eu-species and 1.0 +/- 0.3 ms and 300.0 +/- 50 micros for the Cm-species. The interpretation of the TRLFS data indicates a comparable coordination for both the lanthanide and actinide cation in this ionic liquid. The quenching influence of Cu(II) on the fluorescence emission of Eu(III) and Cm(III) was also measured by TRLFS. While Cu(ii) does not quench the Cm(III) fluorescence emission in C(4)mimTf(2)N the Eu(III) fluorescence emission lifetime for both Eu-species in C(4)mimTf(2)N decreases with increasing Cu(II) concentration. Stern-Volmer constants were calculated (k(SV) = 1.54 x 10(6) M(-1) s(-1) and k(SV) = 2.70 x 10(6) M(-1)). By contrast, the interaction of Cu(II) with Eu(III) and Cm(III) in water leads to a quenching of both the lanthanide and actinide fluorescence. The calculated Stern-Volmer constants are 1.20 x 10(4) M(-1) s(-1) for Eu(III) and 1.27 x 10(4) M(-1) s(-1) for Cm(III). The investigations show, while the chemistry of trivalent lanthanides and actinides is similar in an aqueous system it is dramatically different in ionic liquids. This difference in chemical behavior may provide the opportunity for a separation of lanthanides and actinides with regard to the reprocessing of nuclear fuel.

2.
Chemistry ; 12(11): 3074-81, 2006 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-16432910

RESUMO

The synthesis of two task-specific ionic liquids (TSILs) bearing 2-hydroxybenzylamine entities is described. These compounds are based on an imidazolium substructure onto which one hydrobenzylamine-complexing moiety is grafted. We have demonstrated that, whether pure or diluted, TSIL is able to extract americium ions. Furthermore, recovery of americium from the IL phase into a receiving phase can be achieved under acidic conditions. A possible mechanism for the metal-ion partitioning is presented, in which the extraction system is driven by an ion-exchange mechanism.

3.
Chemistry ; 12(6): 1760-6, 2006 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-16311989

RESUMO

For the first time, the study of a three-step extraction system of water/ionic liquid/supercritical CO2 has been performed. Extraction of trivalent lanthanum and europium from an aqueous nitric acid solution to a supercritical CO2 phase via an imidazolium-based ionic liquid phase is demonstrated, and extraction efficiencies higher than 87 % were achieved. The quantitative extraction is obtained by using different fluorinated beta-diketones with and without the addition of tri(n-butyl)phosphate. The complexation phenomenon occurring in the room-temperature ionic-liquid (RTIL) phase was evidenced by using luminescence spectroscopy.

4.
Inorg Chem ; 44(23): 8355-67, 2005 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-16270974

RESUMO

Combining spectroscopic techniques (TRES and EXAFS) and molecular dynamics simulations, we have investigated the state of trivalent europium dissolved in room-temperature ionic liquids (RTILs), as a function of the RTIL anion and in the presence of added chloride anions. The studied RTILs are based on the 1-butyl-3-methyl-imidazolium (Bumim+) cation and differ by their anionic counterparts: BF4-, PF6-, Tf- (triflate, CF3SO3-), and Tf2N- [(CF3SO2)2N-]. The results show the strong influence of the RTIL nature on the first solvation shell of europium and on its complexation with chloride. Depending on the RTIL, europium(III), which was introduced in solution as a triflate salt, is found to be solvated either by RTIL anions only or as neutral undissociated EuTf3 moieties completed by solvent anions. Kinetic effects, related to the viscosity of the RTIL and the nature of the europium salt, also markedly influence the coordination of added Cl- or F- anions to the metal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...