Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ Comput Sci ; 10: e2100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855220

RESUMO

Portable devices like accelerometers and physiological trackers capture movement and biometric data relevant to sports. This study uses data from wearable sensors to investigate deep learning techniques for recognizing human behaviors associated with sports and fitness. The proposed CNN-BiGRU-CBAM model, a unique hybrid architecture, combines convolutional neural networks (CNNs), bidirectional gated recurrent unit networks (BiGRUs), and convolutional block attention modules (CBAMs) for accurate activity recognition. CNN layers extract spatial patterns, BiGRU captures temporal context, and CBAM focuses on informative BiGRU features, enabling precise activity pattern identification. The novelty lies in seamlessly integrating these components to learn spatial and temporal relationships, prioritizing significant features for activity detection. The model and baseline deep learning models were trained on the UCI-DSA dataset, evaluating with 5-fold cross-validation, including multi-class classification accuracy, precision, recall, and F1-score. The CNN-BiGRU-CBAM model outperformed baseline models like CNN, LSTM, BiLSTM, GRU, and BiGRU, achieving state-of-the-art results with 99.10% accuracy and F1-score across all activity classes. This breakthrough enables accurate identification of sports and everyday activities using simplified wearables and advanced deep learning techniques, facilitating athlete monitoring, technique feedback, and injury risk detection. The proposed model's design and thorough evaluation significantly advance human activity recognition for sports and fitness.

2.
Sci Rep ; 13(1): 12067, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495634

RESUMO

In the field of machine intelligence and ubiquitous computing, there has been a growing interest in human activity recognition using wearable sensors. Over the past few decades, researchers have extensively explored learning-based methods to develop effective models for identifying human behaviors. Deep learning algorithms, known for their powerful feature extraction capabilities, have played a prominent role in this area. These algorithms can conveniently extract features that enable excellent recognition performance. However, many successful deep learning approaches have been built upon complex models with multiple hyperparameters. This paper examines the current research on human activity recognition using deep learning techniques and discusses appropriate recognition strategies. Initially, we employed multiple convolutional neural networks to determine an effective architecture for human activity recognition. Subsequently, we developed a hybrid convolutional neural network that incorporates a channel attention mechanism. This mechanism enables the network to capture deep spatio-temporal characteristics in a hierarchical manner and distinguish between different human movements in everyday life. Our investigations, using the UCI-HAR, WISDM, and IM-WSHA datasets, demonstrated that our proposed model, which includes cross-channel multi-size convolution transformations, outperformed previous deep learning architectures with accuracy rates of 98.92%, 98.80%, and 98.45% respectively. These results indicate that the suggested model surpasses state-of-the-art approaches in terms of overall accuracy, as supported by the research findings.


Assuntos
Algoritmos , Redes Neurais de Computação , Humanos , Atividades Humanas , Reconhecimento Psicológico , Movimento
3.
Math Biosci Eng ; 19(6): 5671-5698, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35603373

RESUMO

Currently, identification of complex human activities is experiencing exponential growth through the use of deep learning algorithms. Conventional strategies for recognizing human activity generally rely on handcrafted characteristics from heuristic processes in time and frequency domains. The advancement of deep learning algorithms has addressed most of these issues by automatically extracting features from multimodal sensors to correctly classify human physical activity. This study proposed an attention-based bidirectional gated recurrent unit as Att-BiGRU to enhance recurrent neural networks. This deep learning model allowed flexible forwarding and reverse sequences to extract temporal-dependent characteristics for efficient complex activity recognition. The retrieved temporal characteristics were then used to exemplify essential information through an attention mechanism. A human activity recognition (HAR) methodology combined with our proposed model was evaluated using the publicly available datasets containing physical activity data collected by accelerometers and gyroscopes incorporated in a wristwatch. Simulation experiments showed that attention mechanisms significantly enhanced performance in recognizing complex human activity.


Assuntos
Aprendizado Profundo , Algoritmos , Exercício Físico , Atividades Humanas , Humanos , Redes Neurais de Computação
4.
Sensors (Basel) ; 22(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35459078

RESUMO

Wearable technology has advanced significantly and is now used in various entertainment and business contexts. Authentication methods could be trustworthy, transparent, and non-intrusive to guarantee that users can engage in online communications without consequences. An authentication system on a security framework starts with a process for identifying the user to ensure that the user is permitted. Establishing and verifying an individual's appearance usually requires a lot of effort. Recent years have seen an increase in the usage of activity-based user identification systems to identify individuals. Despite this, there has not been much research into how complex hand movements can be used to determine the identity of an individual. This research used a one-dimensional residual network with squeeze-and-excitation (SE) configurations called the 1D-ResNet-SE model to investigate hand movements and user identification. According to the findings, the SE modules have enhanced the one-dimensional residual network's identification ability. As a deep learning model, the proposed methodology is capable of effectively identifying features from the input smartwatch sensor and could be utilized as an end-to-end model to clarify the modeling process. The 1D-ResNet-SE identification model is superior to the other models. Hand movement assessment based on deep learning is an effective technique to identify smartwatch users.


Assuntos
Extremidade Superior , Dispositivos Eletrônicos Vestíveis , Mãos , Humanos , Movimento
5.
Sensors (Basel) ; 21(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34833591

RESUMO

Smartphones as ubiquitous gadgets are rapidly becoming more intelligent and context-aware as sensing, networking, and processing capabilities advance. These devices provide users with a comprehensive platform to undertake activities such as socializing, communicating, sending and receiving e-mails, and storing and accessing personal data at any time and from any location. Nowadays, smartphones are used to store a multitude of private and sensitive data including bank account information, personal identifiers, account passwords and credit card information. Many users remain permanently signed in and, as a result, their mobile devices are vulnerable to security and privacy risks through assaults by criminals. Passcodes, PINs, pattern locks, facial verification, and fingerprint scans are all susceptible to various assaults including smudge attacks, side-channel attacks, and shoulder-surfing attacks. To solve these issues, this research introduces a new continuous authentication framework called DeepAuthen, which identifies smartphone users based on their physical activity patterns as measured by the accelerometer, gyroscope, and magnetometer sensors on their smartphone. We conducted a series of tests on user authentication using several deep learning classifiers, including our proposed deep learning network termed DeepConvLSTM on the three benchmark datasets UCI-HAR, WISDM-HARB and HMOG. Results demonstrated that combining various motion sensor data obtained the highest accuracy and energy efficiency ratio (EER) values for binary classification. We also conducted a thorough examination of the continuous authentication outcomes, and the results supported the efficacy of our framework.


Assuntos
Aprendizado Profundo , Computadores de Mão , Exercício Físico , Privacidade , Smartphone
6.
Sensors (Basel) ; 21(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652697

RESUMO

Human Activity Recognition (HAR) employing inertial motion data has gained considerable momentum in recent years, both in research and industrial applications. From the abstract perspective, this has been driven by an acceleration in the building of intelligent and smart environments and systems that cover all aspects of human life including healthcare, sports, manufacturing, commerce, etc. Such environments and systems necessitate and subsume activity recognition, aimed at recognizing the actions, characteristics, and goals of one or more individuals from a temporal series of observations streamed from one or more sensors. Due to the reliance of conventional Machine Learning (ML) techniques on handcrafted features in the extraction process, current research suggests that deep-learning approaches are more applicable to automated feature extraction from raw sensor data. In this work, the generic HAR framework for smartphone sensor data is proposed, based on Long Short-Term Memory (LSTM) networks for time-series domains. Four baseline LSTM networks are comparatively studied to analyze the impact of using different kinds of smartphone sensor data. In addition, a hybrid LSTM network called 4-layer CNN-LSTM is proposed to improve recognition performance. The HAR method is evaluated on a public smartphone-based dataset of UCI-HAR through various combinations of sample generation processes (OW and NOW) and validation protocols (10-fold and LOSO cross validation). Moreover, Bayesian optimization techniques are used in this study since they are advantageous for tuning the hyperparameters of each LSTM network. The experimental results indicate that the proposed 4-layer CNN-LSTM network performs well in activity recognition, enhancing the average accuracy by up to 2.24% compared to prior state-of-the-art approaches.


Assuntos
Atividades Humanas , Redes Neurais de Computação , Smartphone , Teorema de Bayes , Humanos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...