Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(42): 37589-37599, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312366

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) are recognized as one of the most beneficial tools for biomedicine, especially in theranostic applications. Even though SPIONs have excellent properties regarding their biocompatibility and unique magnetic properties, they lack stability in biological fluids. To stabilize and increase the specificity of the SPIONs to target desirable cells or tissues, several surface coatings have been introduced. These surface coatings can lead to different preferences of serum protein bindings, which ultimately determine their behaviors in vitro and in vivo. Thus, understanding the interaction of SPIONs with biological systems is important for their biocompatible design and clinical applications. In this study, using proteomic analyses, we analyzed the protein corona fingerprints on SPIONs with two different coatings, including citrate and riboflavin, that have been widely used as surface coatings and ligands for enhancing cellular uptake in breast cancer cells. Though both citrate-coated SPIONs (C-SPIONs) and riboflavin-coated SPIONs (Rf-SPIONs) showed similar sizes and zeta potentials, we found that Rf-SPIONs adsorbed more serum proteins than bare SPIONs (B-SPIONs) or C-SPIONs, which was likely due to the higher hydrophobicity of the riboflavin. The enriched proteins consisted mainly of immune-responsive and blood coagulation proteins with different fingerprint profiles. Cellular uptake studies in MCF-7 breast cancer cells comparing the activities of preformed and in situ coronas showed different uptake behaviors, suggesting the role of protein corona formation in promoting the interaction between the SPIONs and the cells. The results obtained here provide the essential information for further development of the potential strategy to reduce or stimulate immune response in vivo to increase therapeutic applications of both C-SPIONs and Rf-SPIONs.

2.
Nanoscale Adv ; 4(8): 1988-1998, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133415

RESUMO

Breast cancer accounts for up to 10% of the newly diagnosed cancer cases worldwide, making it the most common cancer found in women. The use of superparamagnetic iron oxide nanoparticles (SPIONs) has been beneficial in the advancement of contrast agents and magnetic hyperthermia (MH) for the diagnosis and treatment of cancers. To achieve delivery of SPIONs to cancer cells, surface functionalization with specific ligands are required. Riboflavin carrier protein (RCP) has been identified as an alternative target for breast cancer cells. Here, we report a novel riboflavin (Rf)-based ligand that provides SPIONs with enhanced colloidal stability and high uptake potential in breast cancer cells. This is achieved by synthesizing an Rf-citrate ligand. The ligand was tested in a multicore SPION system, and affinity to RCP was assessed by isothermal titration calorimetry which showed a specific, entropy-driven binding. MRI and MH responses of the coated Rf-SPIONs were tested to evaluate the suitability of this system as a theranostic platform. Finally, interaction of the Rf-SPIONs with breast cancer cells was evaluated by in vitro cellular uptake in MCF-7 breast cancer cells. The overall characterization of the Rf-SPIONs highlighted the excellent performance of this platform for theranostic applications in breast cancer.

3.
Pharmaceutics ; 14(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890341

RESUMO

Nearly four million yearly deaths can be attributed to respiratory diseases, prompting a huge worldwide health emergency. Additionally, the COVID-19 pandemic's death toll has surpassed six million, significantly increasing respiratory disease morbidity and mortality rates. Despite recent advances, it is still challenging for many drugs to be homogeneously distributed throughout the lungs, and specifically to reach the lower respiratory tract with an accurate sustained dose and minimal systemic side effects. Engineered nanocarriers can provide increased therapeutic efficacy while lessening potential biochemical adverse reactions. Poly(lactic-co-glycolic acid) (PLGA), a biodegradable polymer, has attracted significant interest as an inhalable drug delivery system. However, the influence of the nanocarrier surface charge and its intratracheal instillation has not been addressed so far. In this study, we fabricated red fluorescent PLGA nanocapsules (NCs)-Cy5/PLGA-with either positive (Cy5/PLGA+) or negative surface charge (Cy5/PLGA-). We report here on their excellent colloidal stability in culture and biological media, and after cryo-storage. Their lack of cytotoxicity in two relevant lung cell types, even for concentrations as high as 10 mg/mL, is also reported. More importantly, differences in the NCs' cell uptake rates and internalization capacity were identified. The uptake of the anionic system was faster and in much higher amounts-10-fold and 2.5-fold in macrophages and epithelial alveolar cells, respectively. The in vivo study demonstrated that anionic PLGA NCs were retained in all lung lobules after 1 h of being intratracheally instilled, and were found to accumulate in lung macrophages after 24 h, making those nanocarriers especially suitable as a pulmonary immunomodulatory delivery system with a marked translational character.

4.
Photochem Photobiol ; 97(6): 1548-1557, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34109623

RESUMO

Combating triple-negative breast cancer (TNBC) is one of the greatest challenges in cancer therapy. This is primarily due to the difficulties in developing drug delivery systems that can effectively target cancer sites. In this study, we demonstrated a proof-of-principle concept using modified surfaces of poly(lactic-co-glycolic acid) nanoparticles linked with a riboflavin analogue (PLGA-CSRf) to obtain a dual-functional material. PLGA-CSRf nanoparticles were able to function as a drug delivery ligand and a photodynamic therapy agent for TNBC cells (MDA-MB-231). Biocompatibility of novel PLGA-CSRf nanoparticles was evaluated with both breast cancer and normal breast (MCF-10A) cells. In vitro studies revealed a six-fold increase in the cellular uptake of PLGA-CSRf nanoparticles in cancer cells compared with normal cells. The results demonstrate the ability of riboflavin (Rf) to enhance the delivery of PLGA nanoparticles to TNBC cells. The viability of TNBC cells was decreased following treatment with doxorubicin-encapsulated PLGA-CSRf nanoparticles in combination with UV irradiation, due to the photosensitizing property of Rf on the surface of the nanoparticles. This work demonstrated the ability of PLGA-CSRf to function both as an effective drug delivery carrier and as a therapeutic entity, with the potential to enhance photodynamic effects in the highly aggressive TNBC model.


Assuntos
Nanopartículas , Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Glicóis/uso terapêutico , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Riboflavina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
5.
AAPS PharmSciTech ; 20(2): 55, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30618013

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively studied in biomedical applications for therapeutic or diagnostic purposes. Stability is one of the key determinants dictating successful application of these nanoparticles (NPs) in biological systems. In this study, SPIONs were synthesized and coated with two protective shells-poly(methacrylic acid) (PMAA) or citric acid (CA)-and the stability was evaluated in biologically relevant media together with effect of serum protein supplementation. The stabilities of SPION, SPION-PMAA and SPION-CA in water, DMEM, RPMI, DMEM with 10% (v v-1), and RPMI with 10% (v v-1) fetal bovine serum were determined. Without protective shells, the NPs were not stable and formed large aggregates in all media tested. CA improved the stability of the NPs in water, but was not very effective in improving stability in cell culture media. Addition of serum slightly improved colloidal stability of SPION-CA, whereas inclusion of serum significantly improved the colloidal stability of SPION-PMAA. Serum proteins also found to enhance cellular viability of MCF-7 breast cancer cells after exposure to high concentrations of SPION-PMAA and SPION-CA. Different patterns of serum proteins binding to the NPs were observed, and cellular uptake in MCF-7 cells were investigated. The stabilized SPION-PMAA and SPION-CA NPs showed uptake activity with minimal background attachment. Therefore, the importance of colloidal stability of SPIONs for utilizing in future therapeutic or diagnostic purposes is illustrated.


Assuntos
Proteínas Sanguíneas/metabolismo , Neoplasias da Mama/metabolismo , Coloides/metabolismo , Nanopartículas de Magnetita , Proteínas Sanguíneas/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Coloides/química , Estabilidade de Medicamentos , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células MCF-7 , Nanopartículas de Magnetita/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...