Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37242107

RESUMO

Tantalum boride is an ultra-refractory and ultra-hard ceramic known so far for its favorable high-temperature thermo-mechanical properties and also characterized by a low spectral emittance, making it interesting for novel high-temperature solar absorbers for Concentrating Solar Power. In this work, we investigated two types of TaB2 sintered products with different porosities, and on each of them, we realized four femtosecond laser treatments differing in the accumulated laser fluence. The treated surfaces were then characterized by SEM-EDS, roughness analysis, and optical spectrometry. We show that, depending on laser processing parameters, the multi-scale surface textures produced by femtosecond laser machining can greatly increase the solar absorptance, while the spectral emittance increase is significantly lower. These combined effects result in increased photothermal efficiency of the absorber, with interesting perspectives for the application of these ceramics in Concentrating Solar Power and Concentrating Solar Thermal. To the best of our knowledge, this is the first demonstration of successful photothermal efficiency enhancement of ultra-hard ceramics using laser machining.

2.
Sci Rep ; 8(1): 9148, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904145

RESUMO

Aerospace provides a strong driving force for technological development. Recently a novel class of composites for harsh environments, based on ultra-high temperature ceramic composites reinforced with continuous fibers (UHTCMC), is being developed. The goal of this work is to overcome the current data patchwork about their microstructural optimization and structural behavior, by showing a consistent mechanical characterization of well-defined and developed UHTCMCs based on ZrB2-matrix. The obtained composites have a density of 3.7 g/cm3 and porosity of less than 10%. The flexural strength increased from 360 to 550 MPa from room temperature to 1500 °C, showing a non-brittle behaviour. The composites were able to sustain a thermal shock severity as high as 1500 °C. The maximum decrease of strength at 1400 °C was 16% of the initial value, indicating that the samples could be shocked at even higher temperature. Flexural strength, Young's modulus and coefficient of thermal expansions (CTE) of the composites were measured both along transverse and longitudinal direction and correlated to the microstructural features. The presented microstructural and mechanical characterization well defines the potentiality of the UHTCMCs and can be used as reference for the design and development of novel thermal protection systems and other structural components for harsh environments.

3.
J Mech Behav Biomed Mater ; 17: 1-10, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23122887

RESUMO

Bioactive tricalcium phosphate/titania ceramic composites were synthesized by pressureless air sintering of mixed hydroxyapatite and titania (TiO2) powders. The sintering process was optimized to achieve dense ceramic bodies consisting in a bioactive/bioresorbable matrix (ß-tricalcium phosphate) reinforced with defined amounts of sub-micron sized titania particles. Extensive chemico-physical and mechanical characterization was carried out on the resulting composites, which displayed values of flexural strength, fracture toughness and elastic modulus in the range or above the typical ranges of values manifested by human cortical bone. It was shown that titania particles provided a toughening effect to the calcium-phosphate matrix and a reinforcement in fracture strength, in comparison with sintered hydroxyapatite bodies characterized by similar relative density. The characteristics of the resulting composites, i.e. bioactivity/bioresorbability and ability of manifesting biomimetic mechanical behavior, are features that can promote processes of bone regeneration in load-bearing sites. Hence, in the perspective of developing porous bone scaffolds with high bioactivity and improved biomechanical behavior, TCP/TiO2 composites with controlled composition can be considered as very promising biomaterials for application in a field of orthopedics where no acceptable clinical solutions still exist.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Osso e Ossos/fisiologia , Fosfatos de Cálcio/química , Fenômenos Mecânicos , Regeneração/efeitos dos fármacos , Titânio/química , Osso e Ossos/efeitos dos fármacos , Cerâmica/química , Técnicas de Química Sintética , Durapatita/química , Humanos , Teste de Materiais , Temperatura , Alicerces Teciduais/química
4.
Acta Odontol Scand ; 70(1): 49-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21492062

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the effect of three popular soft drinks on the Young's modulus, hardness, surface topography and chemical composition of widely used nickel-titanium-based orthodontic wires. MATERIALS AND METHODS: Thirty-two specimens (20 mm in length) were cut from the straight portion of pre-formed 0.019 × 0.025 inch Nitinol Heat-Activated archwires and randomly divided into four groups of eight specimens each: Group A1 (Coca Cola(®) regular); Group A2 (Santal(®) orange juice); Group A3 (Gatorade(®)); Group B (distilled, deionized water; dH(2)O). Each specimen was immersed in 10 ml of one of the soft drinks or dH(2)O, control, for 60 min, at 37°C. At the end of the soaking time, the Young's modulus and hardness were determined using a nanoindenter. Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS) was used to characterize the effects on the topography and chemical composition of the wires. RESULTS: No statistically significant differences were found between the groups either in the Young's modulus or in hardness after the selected soaking protocol. Besides some surface colour changes, the topography and the chemical composition of the wires were not affected by the immersion in any of the chosen soft drinks. CONCLUSIONS: These in-vitro results suggest that the consumption of soft drinks cannot be acknowledged as one possible reason for the degradation of the physical and chemical properties of heat activated nickel titanium orthodontic wires in patients undergoing fixed orthodontic treatment.


Assuntos
Bebidas Gaseificadas , Ligas Dentárias/química , Fios Ortodônticos , Ligas , Corrosão , Módulo de Elasticidade , Dureza , Teste de Materiais , Níquel , Distribuição Aleatória , Propriedades de Superfície , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...