Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 2): 128935, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143057

RESUMO

Composite hydrogel microparticles based on pectins with different structures (callus culture pectin (SVC) and apple pectin (AU)) and gelatin were developed. Hydrogel microparticles were formed by the ionotropic gelation and electrostatic interaction of COO- groups of pectin and NH3+ groups of gelatin, which was confirmed by FTIR spectroscopy. The addition of gelatin to pectin-based gel formulations resulted in a decrease in gel strength, whereas increasing gelatin concentration enhanced this effect. The microparticle gel strength increased in proportion to the increase in the pectin concentration. The DSC and TGA analyzes showed that pectin-gelatin gels had the higher thermal stability than individual pectins. The gel strength, Ca2+ content and thermal stability of the microparticles based on gelatin and SVC pectin with a lower degree of methylesterification (DM) (14.8 %) were higher compared to that of microparticles based on gelatin and AU pectin with a higher DM (40 %). An increase in the SVC concentration, Ca2+ content and gel strength of SVC-gelatin microparticles led to a decrease in the swelling degree in simulated gastrointestinal fluids. The addition of 0.5 % gelatin to gels based on AU pectin resulted in increased stability of the microparticles in gastrointestinal fluids, while the microparticles from AU without gelatin were destroyed.


Assuntos
Líquidos Corporais , Hidrogéis , Humanos , Gelatina/química , Pectinas/química , Géis/química , Edema
2.
Int J Biol Macromol ; 138: 629-635, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31336115

RESUMO

The aim of this work was to evaluate the relationship between the cross-linking cation content in the microparticles, chemical characteristics of pectins and swelling properties of the gel microparticles based on the Zn2+, Fe3+ and Al3+ cross-linking cations. A significant negative correlation between the Zn2+ content and DM of pectin indicated that decreasing DM of pectin promoted Zn2+ binding. The microparticles from the pectins with a higher linearity had a higher content of Fe3+. The microparticles from the pectins with a lower Mw, branching of rhamnogalacturonan I, amount of RG, specific viscosity and a higher linearity had a higher content of Al3+. The content of the Fe3+ ions in the microparticles was higher than the Zn2+ content. The Al3+ content in the microparticles was lowest. The Fe3+ and Zn2+ ions, which are more electronegative, bind more strongly to pectin in comparison with the less electronegative Al3+ cations. The microparticles with a higher Zn2+, Fe3+, and Al3+ content had a lower swelling degree in the simulated digestive fluids. Moreover, the higher swelling of the microparticles can be due to their porous or wrinkled surface. Variation of specific cations and pectins can influence the functionality of the gel microparticles, in particular swelling properties.


Assuntos
Alumínio/química , Géis/química , Ferro/química , Pectinas/química , Zinco/química , Fenômenos Químicos
3.
Int J Biol Macromol ; 123: 300-307, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445072

RESUMO

Gel microparticles were prepared from pectins of campion (SVCgel) and duckweed (LMCgel) callus cultures, as well as from commercial apple pectin (APgel) by emulsion dehydration techniques with successive ionotropic gelation. The morphology and swelling behavior of the microparticles were determined after successive incubation in simulated gastric (SGF), intestinal (SIF), and colonic (SCF) fluids. Both SVCgel and LMCgel microparticles were found to swell in SGF and SIF gradually, and at oral administration decreased food intake by laboratory mice during the first 5 h of free-feeding. The SVCgel microparticles demonstrated the higher stability in SCF within 24 h than LMCgel ones. Only the SVCgel microparticles were shown to decrease food intake by 24% during the 21 h of free-feeding and decreased body weight of mice by 4% during 24 h after oral administration. The APgel microparticles lost their shape in SIF, then fully disintegrated after 0.5 h of incubation in SCF, and failed to affect food intake or mice body weight. The data obtained indicated that sustainability and swelling of the gel microparticles from the SVC pectin in the colonic fluid may provide the stronger satiating effect compared to that of the LMCgel microparticles.


Assuntos
Líquidos Corporais/efeitos dos fármacos , Calo Ósseo/química , Ingestão de Alimentos/efeitos dos fármacos , Pectinas/administração & dosagem , Administração Oral , Animais , Colo/efeitos dos fármacos , Portadores de Fármacos , Edema/tratamento farmacológico , Emulsões/administração & dosagem , Emulsões/química , Suco Gástrico/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Malus/química , Camundongos , Tamanho da Partícula , Pectinas/química , Células Vegetais/química
4.
Int J Biol Macromol ; 120(Pt B): 2225-2233, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30012483

RESUMO

The aim of this work is to produce calcium pectin-silica gel beads containing mesalazine as a drug model in order to control the drug release in the colon. The mesalazine loaded calcium pectin-silica gel beads were prepared using the ionotropic gelation method. Energy-dispersive X-ray analysis revealed that increasing the Na2SiO3 concentration led to an increase of the silicon content on the surface and in the cross-sections of the beads. The addition of Na2SiO3 to the gel formulations made from the duckweed callus culture pectin led to a decrease in the swelling degree that appeared to be related to the higher gel strength of these beads. The beads made from pectins of campion and duckweed callus cultures with adding of 22.2 mg/ml of Na2SiO3 showed the lowest release of mesalazine in simulated gastric and intestinal fluids. An increase in the reaction time up to 60 min during incubation in the cross-linking solution of CaCl2 led to a slower release of drug from the beads. An elevated release of mesalazine was achieved in the simulated colonic fluid. Prepared calcium pectin-silica gel beads containing mesalazine as a drug model can be proposed for controlled drug release in the colon.


Assuntos
Colo/metabolismo , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Mesalamina/química , Mesalamina/metabolismo , Pectinas/química , Sílica Gel/química , Araceae/química
5.
Int J Biol Macromol ; 112: 900-908, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29444473

RESUMO

The aim of this research is to investigate the influence of the surface morphology of the calcium pectinate gel (CaPG) beads as well as the physicochemical characteristics of pectins and the CaPG beads on the adhesive properties of gels against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Bacillus subtilis. The adhesion of the bacteria depends on the type of pectin and the surface morphology of the beads. The faster adhesion on CaPG beads appeared to be related to a lower degree of methyl esterification (DE), a higher molecular weight (Mw) and specific viscosity of the pectin and a higher gel strength. Surface roughness measurements were performed using an atomic force microscope. The beads from pectins with a higher Mw, a higher specific viscosity and a lower DE had a higher surface roughness. The surface roughness was one of the factors promoting adhesion of the bacteria onto the calcium pectinate gels. The surface morphology was observed under a scanning electron microscope (SEM). SEM images illustrated that E. coli and B. subtilis adhered on the beads with a rough surface. CaPG beads obtained from callus culture pectins can be proposed for the preparation of gels with adhesive and antiadhesive properties.


Assuntos
Adesivos/química , Géis/química , Pectinas/química , Bacillus subtilis/citologia , Bacillus subtilis/ultraestrutura , Aderência Bacteriana , Escherichia coli/citologia , Escherichia coli/ultraestrutura , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...