Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 5(11): 180764, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30564389

RESUMO

Oceanic arcs can provide insight into the processes of crustal growth and crustal structure. In this work, changes in crustal thickness and composition along the Lesser Antilles Arc (LAA) are analysed at 10 islands using receiver function (RF) inversions that combine seismological data with vP/vS ratios estimated based on crustal lithology. We collected seismic data from various regional networks to ensure station coverage for every major island in the LAA from Saba in the north to Grenada in the south. RFs show the subsurface response of an incoming signal assuming horizontal layering, where phase conversions highlight discontinuities beneath a station. In most regions of the Earth, the Mohorovicic discontinuity (Moho) is seismically stronger than other crustal discontinuities. However, in the LAA we observe an unusually strong along-arc variation in depth of the strongest discontinuity, which is difficult to explain by variations in crustal thickness. Instead, these results suggest that in layered crust, especially where other discontinuities have a stronger seismic contrast than the Moho, H-k stacking results can be easily misinterpreted. To circumvent this problem, an inversion modelling approach is introduced to investigate the crustal structure in more detail by building a one-dimensional velocity-depth profile for each island. Using this method, it is possible to identify any mid-crustal discontinuity in addition to the Moho. Our results show a mid-crustal discontinuity at about 10-25 km depth along the arc, with slightly deeper values in the north (Montserrat to Saba). In general, the depth of the Moho shows the same pattern with values of around 25 km (Grenada) to 35 km in the north. The results suggest differences in magmatic H2O content and differentiation history of each island.

2.
Contrib Mineral Petrol ; 172(11): 98, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009663

RESUMO

St. Kitts lies in the northern Lesser Antilles, a subduction-related intraoceanic volcanic arc known for its magmatic diversity and unusually abundant cognate xenoliths. We combine the geochemistry of xenoliths, melt inclusions and lavas with high pressure-temperature experiments to explore magma differentiation processes beneath St. Kitts. Lavas range from basalt to rhyolite, with predominant andesites and basaltic andesites. Xenoliths, dominated by calcic plagioclase and amphibole, typically in reaction relationship with pyroxenes and olivine, can be divided into plutonic and cumulate varieties based on mineral textures and compositions. Cumulate varieties, formed primarily by the accumulation of liquidus phases, comprise ensembles that represent instantaneous solid compositions from one or more magma batches; plutonic varieties have mineralogy and textures consistent with protracted solidification of magmatic mush. Mineral chemistry in lavas and xenoliths is subtly different. For example, plagioclase with unusually high anorthite content (An≤100) occurs in some plutonic xenoliths, whereas the most calcic plagioclase in cumulate xenoliths and lavas are An97 and An95, respectively. Fluid-saturated, equilibrium crystallisation experiments were performed on a St. Kitts basaltic andesite, with three different fluid compositions (XH2O = 1.0, 0.66 and 0.33) at 2.4 kbar, 950-1025 °C, and fO2 = NNO - 0.6 to NNO + 1.2 log units. Experiments reproduce lava liquid lines of descent and many xenolith assemblages, but fail to match xenolith and lava phenocryst mineral compositions, notably the very An-rich plagioclase. The strong positive correlation between experimentally determined plagioclase-melt KdCa-Na and dissolved H2O in the melt, together with the occurrence of Al-rich mafic lavas, suggests that parental magmas were water-rich (> 9 wt% H2O) basaltic andesites that crystallised over a wide pressure range (1.5-6 kbar). Comparison of experimental and natural (lava, xenolith) mafic mineral composition reveals that whereas olivine in lavas is predominantly primocrysts precipitated at low-pressure, pyroxenes and spinel are predominantly xenocrysts formed by disaggregation of plutonic mushes. Overall, St. Kitts xenoliths and lavas testify to mid-crustal differentiation of low-MgO basalt and basaltic andesite magmas within a trans-crustal, magmatic mush system. Lower crustal ultramafic cumulates that relate parental low-MgO basalts to primary, mantle -derived melts are absent on St. Kitts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...