Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37485435

RESUMO

Modularity is a key concept in designing synthetic gene circuits, as it allows for constructing complex molecular systems using well-characterized building blocks. One of the major challenges in this field is that these modular components often do not function as expected when assembled into larger circuits. One of the major issues is caused by resource competition, where multiple genes in the circuit compete for the same limited cellular resources, such as transcription factors and ribosomes. In addition, the mutual inhibition between synthetic gene circuits and cell growth results in growth feedback that significantly impacts its host-circuit dynamics. However, the complexity of the gene circuit dynamics under intertwined resource competition and growth feedback is not fully understood. This study developed a theoretical framework to examine the dynamics of synthetic gene circuits by considering both growth feedback and resource competition. Our results suggest a cooperative behavior between resource-competing gene circuits under growth feedback. Cooperation or competition is non-monotonically determined by the metabolic burden threshold. These two diverse effects could lead to the activation or deactivation of one circuit by the other. Lastly, the cooperativity mediated by growth feedback can attenuate the winner-takes-all resource competition. These findings show that coupling growth feedback and resource competition plays a crucial role in the dynamics of the host-circuit system, and understanding its effects helps control unexpected gene expression behaviors.

2.
PLoS Comput Biol ; 18(9): e1010518, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36112667

RESUMO

The mutual interactions between the synthetic gene circuits and the host growth could cause unexpected outcomes in the dynamical behaviors of the circuits. However, how the steady states and the stabilities of the gene circuits are affected by host cell growth is not fully understood. Here, we developed a mathematical model for nonlinear growth feedback based on published experimental data. The model analysis predicts that growth feedback could significantly change the qualitative states of the system. Bistability could emerge in a circuit without positive feedback, and high-order multistability (three or more steady states) arises in the self-activation and toggle switch circuits. Our results provide insight into the potential effects of ultrasensitive growth feedback on the emergence of qualitative states in synthetic circuits and the corresponding underlying mechanism.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Ciclo Celular , Retroalimentação , Redes Reguladoras de Genes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...