Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Eur J Immunol ; 54(2): e2250248, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37957831

RESUMO

Human intestinal organoids are an ideal model system for studying gastrointestinal physiology and immunopathology. Altered physiology and mucosal immune response are hallmarks of numerous intestinal functional and inflammatory diseases, including inflammatory bowel disease (IBD), coeliac disease, irritable bowel syndrome (IBS), and obesity. These conditions impact the normal epithelial functions of the intestine, such as absorption, barrier function, secretion, and host-microbiome communication. They are accompanied by characteristic intestinal symptoms and have significant societal, economic, and healthcare burdens. To develop new treatment options, cutting-edge research is required to investigate their etiology and pathology. Human intestinal organoids derived from patient tissue recapitulate the key physiological and immunopathological aspects of these conditions, providing a promising platform for elucidating disease mechanisms. This review will summarize recent reports on patient-derived human small intestinal and colonic organoids and highlight how these models have been used to study intestinal epithelial functions in the context of inflammation, altered physiology, and immune response. Furthermore, it will elaborate on the various organoid systems in use and the techniques/assays currently available to study epithelial functions. Finally, it will conclude by discussing the limitations and future perspectives of organoid technology.


Assuntos
Doenças Inflamatórias Intestinais , Mucosa Intestinal , Humanos , Intestinos/patologia , Organoides/patologia , Organoides/fisiologia , Intestino Delgado/patologia
2.
Gut Microbes ; 15(1): 2229948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424323

RESUMO

A high-fat (HF) diet reduces resistance to the foodborne pathogen Listeria monocytogenes. We demonstrate that short-term gavage with A. muciniphila increases resistance to oral and systemic L. monocytogenes infection in mice fed a HF diet. A. muciniphila reduced inflammation in the gut and liver of mice fed a high-fat diet prior to infection and reduced inflammatory cell infiltration in the ileum to levels similar to mice fed a low-fat (LF) diet. Akkermansia administration had minimal impacts upon the microbiota and microbial metabolites and did not affect individual taxa or impact the Bacteroidetes to Firmicutes ratio. In summary, A. muciniphila increased resistance to L. monocytogenes infection in mice fed a HF diet by moderating immune/physiological effects through specific interaction between A. muciniphila and the host gut.


Assuntos
Microbioma Gastrointestinal , Listeria monocytogenes , Listeriose , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Verrucomicrobia/fisiologia , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768196

RESUMO

Environmental factors, including westernised diets and alterations to the gut microbiota, are considered risk factors for inflammatory bowel diseases (IBD). The mechanisms underpinning diet-microbiota-host interactions are poorly understood in IBD. We present evidence that feeding a lard-based high-fat (HF) diet can protect mice from developing DSS-induced acute and chronic colitis and colitis-associated cancer (CAC) by significantly reducing tumour burden/incidence, immune cell infiltration, cytokine profile, and cell proliferation. We show that HF protection was associated with increased gut microbial diversity and a significant reduction in Proteobacteria and an increase in Firmicutes and Clostridium cluster XIVa abundance. Microbial functionality was modulated in terms of signalling fatty acids and bile acids (BA). Faecal secondary BAs were significantly induced to include moieties that can activate the vitamin D receptor (VDR), a nuclear receptor richly represented in the intestine and colon. Indeed, colonic VDR downstream target genes were upregulated in HF-fed mice and in combinatorial lipid-BAs-treated intestinal HT29 epithelial cells. Collectively, our data indicate that HF diet protects against colitis and CAC risk through gut microbiota and BA metabolites modulating vitamin D targeting pathways. Our data highlights the complex relationship between dietary fat-induced alterations of microbiota-host interactions in IBD/CAC pathophysiology.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Neoplasias , Camundongos , Animais , Vitamina D/metabolismo , Inflamação/metabolismo , Colite/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Colo/patologia , Dieta Hiperlipídica/efeitos adversos , Bactérias , Ácidos e Sais Biliares/metabolismo , Camundongos Endogâmicos C57BL , Sulfato de Dextrana/efeitos adversos , Neoplasias/metabolismo
4.
Gut Microbes ; 15(1): 2163838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656595

RESUMO

Conflicting evidence exists on the association between consumption of non-steroidal anti-inflammatory drugs (NSAIDs) and symptomatic worsening of inflammatory bowel disease (IBD). We hypothesized that the heterogeneous prevalence of pathobionts [e.g., adherent-invasive Escherichia coli (AIEC)], might explain this inconsistent NSAIDs/IBD correlation. Using IL10-/- mice, we found that NSAID aggravated colitis in AIEC-colonized animals. This was accompanied by activation of the NLRP3 inflammasome, Caspase-8, apoptosis, and pyroptosis, features not seen in mice exposed to AIEC or NSAID alone, revealing an AIEC/NSAID synergistic effect. Inhibition of NLRP3 or Caspase-8 activity ameliorated colitis, with reduction in NLRP3 inflammasome activation, cell death markers, activated T-cells and macrophages, improved histology, and increased abundance of Clostridium cluster XIVa species. Our findings provide new insights into how NSAIDs and an opportunistic gut-pathobiont can synergize to worsen IBD symptoms. Targeting the NLRP3 inflammasome or Caspase-8 could be a potential therapeutic strategy in IBD patients with gut inflammation, which is worsened by NSAIDs.


Assuntos
Anti-Inflamatórios não Esteroides , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Camundongos , Anti-Inflamatórios não Esteroides/efeitos adversos , Caspase 8/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Inflamassomos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inibidores de Caspase/farmacologia , Escherichia coli/patogenicidade
5.
Gut Microbes ; 14(1): 2149023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420990

RESUMO

The mechanisms by which early microbial colonizers of the neonate influence gut development are poorly understood. Bacterial bile salt hydrolase (BSH) acts as a putative colonization factor that influences bile acid signatures and microbe-host signaling pathways and we considered whether this activity can influence infant gut development. In silico analysis of the human neonatal gut metagenome confirmed that BSH enzyme sequences are present as early as one day postpartum. Gastrointestinal delivery of cloned BSH to immature gnotobiotic mice accelerated shortening of the colon and regularized gene expression profiles, with monocolonised mice more closely resembling conventionally raised animals. In situ expression of BSH decreased markers of cell proliferation (Ki67, Hes2 and Ascl2) and strongly increased expression of ALPI, a marker of cell differentiation and barrier function. These data suggest an evolutionary paradigm whereby microbial BSH activity potentially influences bacterial colonization and in-turn benefits host gastrointestinal maturation.


Assuntos
Microbioma Gastrointestinal , Transcriptoma , Feminino , Humanos , Camundongos , Animais , Amidoidrolases/genética , Amidoidrolases/metabolismo , Trato Gastrointestinal/microbiologia , Bactérias/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G439-G460, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165492

RESUMO

DNA sensor pathways can initiate inflammasome, cell death, and type I interferon (IFN) signaling in immune-mediated inflammatory diseases (IMIDs), including type I interferonopathies. We investigated the involvement of these pathways in the pathogenesis of ulcerative colitis (UC) by analyzing the expression of DNA sensor, inflammasome, and type I IFN biomarker genes in colonic mucosal biopsy tissue from control (n = 31), inactive UC (n = 31), active UC (n = 33), and a UC single-cell RNA-Seq dataset. The effects of type I IFN (IFN-ß), IFN-γ, and TNF-α on gene expression, cytokine production, and cell death were investigated in human colonic organoids. In organoids treated with cytokines alone, or in combination with NLR family pyrin domain-containing 3 (NLRP3), caspase, or JAK inhibitors, cell death was measured, and supernatants were assayed for IL-1ß/IL-18/CXCL10. The expression of DNA sensor pathway genes-PYHIN family members [absent in melanoma 2 (AIM2), IFI16, myeloid cell nuclear differentiation antigen (MNDA), and pyrin and HIN domain family member 1 (PYHIN1)- as well as Z-DNA-binding protein 1 (ZBP1), cyclic GMP-AMP synthase (cGAS), and DDX41 was increased in active UC and expressed in a cell type-restricted pattern. Inflammasome genes (CASP1, IL1B, and IL18), type I IFN inducers [stimulator of interferon response cGAMP interactor 1 (STING), TBK1, and IRF3), IFNB1, and type I IFN biomarker genes (OAS2, IFIT2, and MX2) were also increased in active UC. Cotreatment of organoids with IFN-ß or IFN-γ in combination with TNFα increased expression of IFI16, ZBP1, CASP1, cGAS, and STING induced cell death and IL-1ß/IL-18 secretion. This inflammatory cell death was blocked by the JAK inhibitor tofacitinib but not by inflammasome or caspase inhibitors. Increased type I IFN activity may drive elevated expression of DNA sensor genes and JAK-dependent but inflammasome-independent inflammatory cell death of colonic epithelial cells in UC.NEW & NOTEWORTHY This study found that patients with active UC have significantly increased colonic gene expression of cytosolic DNA sensor, inflammasome, STING, and type I IFN signaling pathways. The type I IFN, IFN-ß, in combination with TNF-α induced JAK-dependent but NLRP3 and inflammasome-independent inflammatory cell death of colonic organoids. This novel inflammatory cell death phenotype is relevant to UC immunopathology and may partially explain the efficacy of the JAKinibs tofacitinib and upadacitinib in patients with UC.


Assuntos
Colite Ulcerativa , Interferon Tipo I , Inibidores de Janus Quinases , Humanos , Inflamassomos/metabolismo , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa , Inibidores de Caspase , Organoides/metabolismo , Pirina , Caspase 1/metabolismo , Nucleotidiltransferases/metabolismo , DNA , Morte Celular , Proteínas de Ligação a DNA/metabolismo , Antígenos de Diferenciação
7.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955491

RESUMO

Crohn's disease (CD) is a complex, disabling, idiopathic, progressive, and destructive disorder with an unknown etiology. The pathogenesis of CD is multifactorial and involves the interplay between host genetics, and environmental factors, resulting in an aberrant immune response leading to intestinal inflammation. Due to the high morbidity and long-term management of CD, the development of non-pharmacological approaches to mitigate the severity of CD has recently attracted great attention. The gut microbiota has been recognized as an important player in the development of CD, and general alterations in the gut microbiome have been established in these patients. Thus, the gut microbiome has emerged as a pre-eminent target for potential new treatments in CD. Epidemiological and interventional studies have demonstrated that diet could impact the gut microbiome in terms of composition and functionality. However, how specific dietary strategies could modulate the gut microbiota composition and how this would impact host-microbe interactions in CD are still unclear. In this review, we discuss the most recent knowledge on host-microbe interactions and their involvement in CD pathogenesis and severity, and we highlight the most up-to-date information on gut microbiota modulation through nutritional strategies, focusing on the role of the microbiota in gut inflammation and immunity.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Doença de Crohn/terapia , Dieta , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos , Humanos , Inflamação/terapia
8.
Gut Microbes ; 14(1): 2007743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023810

RESUMO

In healthy hosts the gut microbiota is restricted to gut tissues by several barriers some of which require MyD88-dependent innate immune sensor pathways. Nevertheless, some gut taxa have been reported to disseminate to systemic tissues. However, the extent to which this normally occurs during homeostasis in healthy organisms is still unknown. In this study, we recovered viable gut bacteria from systemic tissues of healthy wild type (WT) and MyD88-/- mice. Shotgun metagenomic-sequencing revealed a marked increase in the relative abundance of L. johnsonii in intestinal tissues of MyD88-/- mice compared to WT mice. Lactobacillus johnsonii was detected most frequently from multiple systemic tissues and at higher levels in MyD88-/- mice compared to WT mice. Viable L. johnsonii strains were recovered from different cell types sorted from intestinal and systemic tissues of WT and MyD88-/- mice. L. johnsonii could persist in dendritic cells and may represent murine immunomodulatory endosymbionts.


Assuntos
Microbioma Gastrointestinal , Lactobacillus johnsonii/fisiologia , Fator 88 de Diferenciação Mieloide/deficiência , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Células Dendríticas/microbiologia , Trato Gastrointestinal/microbiologia , Lactobacillus johnsonii/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética
9.
Annu Rev Food Sci Technol ; 13: 489-512, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-34990225

RESUMO

Diet exerts a major influence upon host immune function and the gastrointestinal microbiota. Although components of the human diet (including carbohydrates, fats, and proteins) are essential sources of nutrition for the host, they also influence immune function directly through interaction with innate and cell-mediated immune regulatory mechanisms. Regulation of the microbiota community structure also provides a mechanism by which food components influence host immune regulatory processes. Here, we consider the complex interplay between components of the modern (Western) diet, the microbiota, and host immunity in the context of obesity and metabolic disease, inflammatory bowel disease, and infection.


Assuntos
Microbioma Gastrointestinal , Microbiota , Dieta , Dieta Ocidental/efeitos adversos , Humanos , Estado Nutricional , Obesidade
10.
Cell Death Dis ; 12(10): 864, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556638

RESUMO

Rewiring of host cytokine networks is a key feature of inflammatory bowel diseases (IBD) such as Crohn's disease (CD). Th1-type cytokines-IFN-γ and TNF-α-occupy critical nodes within these networks and both are associated with disruption of gut epithelial barrier function. This may be due to their ability to synergistically trigger the death of intestinal epithelial cells (IECs) via largely unknown mechanisms. In this study, through unbiased kinome RNAi and drug repurposing screens we identified JAK1/2 kinases as the principal and nonredundant drivers of the synergistic killing of human IECs by IFN-γ/TNF-α. Sensitivity to IFN-γ/TNF-α-mediated synergistic IEC death was retained in primary patient-derived intestinal organoids. Dependence on JAK1/2 was confirmed using genetic loss-of-function studies and JAK inhibitors (JAKinibs). Despite the presence of biochemical features consistent with canonical TNFR1-mediated apoptosis and necroptosis, IFN-γ/TNF-α-induced IEC death was independent of RIPK1/3, ZBP1, MLKL or caspase activity. Instead, it involved sustained activation of JAK1/2-STAT1 signalling, which required a nonenzymatic scaffold function of caspase-8 (CASP8). Further modelling in gut mucosal biopsies revealed an intercorrelated induction of the lethal CASP8-JAK1/2-STAT1 module during ex vivo stimulation of T cells. Functional studies in CD-derived organoids using inhibitors of apoptosis, necroptosis and JAKinibs confirmed the causative role of JAK1/2-STAT1 in cytokine-induced death of primary IECs. Collectively, we demonstrate that TNF-α synergises with IFN-γ to kill IECs via the CASP8-JAK1/2-STAT1 module independently of canonical TNFR1 and cell death signalling. This non-canonical cell death pathway may underpin immunopathology driven by IFN-γ/TNF-α in diverse autoinflammatory diseases such as IBD, and its inhibition may contribute to the therapeutic efficacy of anti-TNFs and JAKinibs.


Assuntos
Caspase 8/metabolismo , Células Epiteliais/patologia , Interferon gama/metabolismo , Intestinos/patologia , Janus Quinase 1/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Apoptose , Biópsia , Morte Celular , Linhagem Celular Tumoral , Colo/patologia , Citoproteção , Células Epiteliais/metabolismo , Humanos , Janus Quinase 2/metabolismo , Mitocôndrias/metabolismo , Organoides/patologia , Interferência de RNA , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais
11.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361102

RESUMO

Interactions between the intestinal microbiota, immune system and nervous system are essential for homeostasis in the gut. Inflammasomes contribute to innate immunity and brain-gut interactions, but their role in microbiota-neuro-immune interactions is not clear. Therefore, we investigated the effect of the inflammasome on visceral pain and local and systemic neuroimmune responses after antibiotic-induced changes to the microbiota. Wild-type (WT) and caspase-1/11 deficient (Casp1 KO) mice were orally treated for 2 weeks with an antibiotic cocktail (Abx, Bacitracin A and Neomycin), followed by quantification of representative fecal commensals (by qPCR), cecal short chain fatty acids (by HPLC), pathways implicated in the gut-neuro-immune axis (by RT-qPCR, immunofluorescence staining, and flow cytometry) in addition to capsaicin-induced visceral pain responses. Abx-treatment in WT-mice resulted in an increase in colonic macrophages, central neuro-immune interactions, colonic inflammasome and nociceptive receptor gene expression and a reduction in capsaicin-induced visceral pain. In contrast, these responses were attenuated in Abx-treated Casp1 KO mice. Collectively, the data indicate an important role for the inflammasome pathway in functional and inflammatory gastrointestinal conditions where pain and alterations in microbiota composition are prominent.


Assuntos
Caspase 1/fisiologia , Microbioma Gastrointestinal , Inflamassomos/imunologia , Inflamação/complicações , Neuroimunomodulação , Dor Visceral/patologia , Animais , Antibacterianos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/microbiologia , Encéfalo/patologia , Capsaicina/toxicidade , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Colo/patologia , Feminino , Inflamassomos/efeitos dos fármacos , Inflamação/imunologia , Inflamação/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Dor Visceral/etiologia , Dor Visceral/metabolismo
12.
Front Immunol ; 12: 655960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394073

RESUMO

Carcinoembryogenic antigen cellular adhesion molecules (CEACAMs) are intercellular adhesion molecules highly expressed in intestinal epithelial cells. CEACAM1, -3, -5, -6, -7 are altered in patients suffering from colon cancer and inflammatory bowel diseases (IBD), but their role in the onset and pathogenesis of IBD is not well known. Herein, we aim to correlate CEACAM1, -3, -5, -6, -7 expression to the degree of inflammation in pediatric and adult IBD colon biopsies and to examine the regulation of CEACAMs on human intestinal epithelial cell lines (C2BBe1/HT29) by different IBD-associated triggers (cytokines, bacteria/metabolites, emulsifiers) and IBD-drugs (6-Mercaptopurine, Prednisolone, Tofacitinib). Biopsies from patients with pediatric Crohn's disease (CD) and adult ulcerative colitis (UC, active/inactive disease) showed a significant increase in CEACAM3, -5, -6 expression, while CEACAM5 expression was reduced in adult CD patients (active/inactive disease). Intestinal epithelial cells cultured with a pro-inflammatory cytokine cocktail and Adherent-invasive Escherichia coli (AIEC) showed a rapid induction of CEACAM1, -5, -7 followed by a reduced RNA and protein expression overtime and a constant expression of CEACAM3, correlating with IL-8 expression. Cells cultured with the emulsifier polysorbate-80 resulted in a significant induction of CEACAM3, -5, -6, -7 at a late time point, while SCFA treatment reduced CEACAM1, -5, -7 expression. No major alterations in expression of CEACAMs were noted on cells cultured with the commensal Escherichia coli K12 or the pathogen Salmonella typhimurium. IBD drugs, particularly Tofacitinib, significantly reduced cytokine-induced CEACAM1, -3, -5, -6, -7 expression associated with a reduced IL-8 secretion. In conclusion, we provide new evidence on the regulation of CEACAMs by different IBD-associated triggers, identifying a role of CEACAMs in IBD pathogenesis.


Assuntos
Antígeno Carcinoembrionário/genética , Moléculas de Adesão Celular/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Biópsia , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Doença de Crohn/etiologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Família Multigênica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
13.
Front Microbiol ; 12: 653587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220742

RESUMO

Exopolysaccharide (EPS) is a bacterial extracellular carbohydrate moiety which has been associated with immunomodulatory activity and host protective effects of several gut commensal bacteria. Bifidobacterium breve are early colonizers of the human gastrointestinal tract (GIT) but the role of EPS in mediating their effects on the host has not been investigated for many strains. Here, we characterized EPS production by a panel of human B. breve isolates and investigated the effect of EPS status on host immune responses using human and murine cell culture-based assay systems. We report that B. breve EPS production is heterogenous across strains and that immune responses in human THP-1 monocytes are strain-specific, but not EPS status-specific. Using wild type and isogenic EPS deficient mutants of B. breve strains UCC2003 and JCM7017 we show that EPS had strain-specific divergent effects on cytokine responses from murine bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs). The B. breve UCC2003 EPS negative (EPS-) strain increased expression of cytokine genes (Tnfa, Il6, Il12a, and Il23a) relative to untreated BMDCs and BMDCs treated with wild type strain. B. breve UCC2003 and JCM7017 EPS- strains increased expression of dendritic cell (DC) activation and maturation marker genes (Cd80, Cd83, and Cd86) relative to untreated BMDCs. Consistent with this, BMDCs co-cultured with B. breve UCC2003 and JCM7017 EPS- strains engineered to express OVA antigen activated OVA-specific OT-II CD4+ T-cells in a co-culture antigen-presentation assay while EPS proficient strains did not. Collectively, these data indicate that B. breve EPS proficient strains use EPS to prevent maturation of DCs and activation of antigen specific CD4+ T cells responses to B. breve. This study identifies a new immunomodulatory role for B. breve EPS and suggests it may be important for immune evasion of adaptive immunity by B. breve and contribute to host-microbe mutualism.

14.
Cell Rep ; 35(6): 109093, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979605

RESUMO

We investigated how protein quantity (10%-30%) and quality (casein and whey) interact with dietary fat (20%-55%) to affect metabolic health in adult mice. Although dietary fat was the main driver of body weight gain and individual tissue weight, high (30%) casein intake accentuated and high whey intake reduced the negative metabolic aspects of high fat. Jejunum and liver transcriptomics revealed increased intestinal permeability, low-grade inflammation, altered lipid metabolism, and liver dysfunction in casein-fed but not whey-fed animals. These differential effects were accompanied by altered gut size and microbial functions related to amino acid degradation and lipid metabolism. Fecal microbiota transfer confirmed that the casein microbiota increases and the whey microbiota impedes weight gain. These data show that the effects of dietary fat on weight gain and tissue partitioning are further influenced by the quantity and quality of the associated protein, primarily via effects on the microbiota.


Assuntos
Gorduras na Dieta/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Microbiota/fisiologia , Obesidade/metabolismo , Proteínas/metabolismo , Aumento de Peso/fisiologia , Animais , Humanos , Masculino , Camundongos
15.
Sci Rep ; 11(1): 5896, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723368

RESUMO

The mechanisms through which cells of the host innate immune system distinguish commensal bacteria from pathogens are currently unclear. Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) expressed by host cells which recognize microbe-associated molecular patterns (MAMPs) common to both commensal and pathogenic bacteria. Of the different TLRs, TLR2/6 recognize bacterial lipopeptides and trigger cytokines responses, especially to Gram-positive and Gram-negative pathogens. We report here that TLR2 is dispensable for triggering macrophage cytokine responses to different strains of the Gram-positive commensal bacterial species Lactobacillus salivarius. The L. salivarius UCC118 strain strongly upregulated expression of the PRRs, Mincle (Clec4e), TLR1 and TLR2 in macrophages while downregulating other TLR pathways. Cytokine responses triggered by L. salivarius UCC118 were predominantly TLR2-independent but MyD88-dependent. However, macrophage cytokine responses triggered by another Gram-positive commensal bacteria, Bifidobacterium breve UCC2003 were predominantly TLR2-dependent. Thus, we report a differential requirement for TLR2-dependency in triggering macrophage cytokine responses to different commensal Gram-positive bacteria. Furthermore, TNF-α responses to the TLR2 ligand FSL-1 and L. salivarius UCC118 were partially Mincle-dependent suggesting that PRR pathways such as Mincle contribute to the recognition of MAMPs on distinct Gram-positive commensal bacteria. Ultimately, integration of signals from these different PRR pathways and other MyD88-dependent pathways may determine immune responses to commensal bacteria at the host-microbe interface.


Assuntos
Citocinas/metabolismo , Ligilactobacillus salivarius/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Humanos , Ligantes , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Células THP-1 , Receptor 2 Toll-Like/agonistas
16.
Cell Death Dis ; 11(1): 68, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988296

RESUMO

Proteins of the BCL-2 family are evolutionarily conserved modulators of apoptosis that function as sensors of cellular integrity. Over the past three decades multiple BCL-2 family members have been identified, many of which are now fully incorporated into regulatory networks governing the mitochondrial apoptotic pathway. For some, however, an exact role in cell death signalling remains unclear. One such 'orphan' BCL-2 family member is BCL-G (or BCL2L14). In this study we analysed gastrointestinal expression of human BCL-G in health and disease states, and investigated its contribution to inflammation-induced tissue damage by exposing intestinal epithelial cells (IEC) to IFN-γ and TNF-α, two pro-inflammatory mediators associated with gut immunopathology. We found that both BCL-G splice variants - BCL-GS (short) and BCL-GL (long) - were highly expressed in healthy gut tissue, and that their mRNA levels decreased in active inflammatory bowel diseases (for BCL-GS) and colorectal cancer (for BCL-GS/L). In vitro studies revealed that IFN-γ and TNF-α synergised to upregulate BCL-GS/L and to trigger apoptosis in colonic epithelial cell lines and primary human colonic organoids. Using RNAi, we showed that synergistic induction of IEC death was STAT1-dependent while optimal expression of BCL-GS/L required STAT1, NF-κB/p65 and SWI/SNF-associated chromatin remodellers BRM and BRG1. To test the direct contribution of BCL-G to the effects of IFN-γ and TNF-α on epithelial cells, we used RNAi- and CRISPR/Cas9-based perturbations in parallel with isoform-specific overexpression of BCL-G, and found that BCL-G was dispensable for Th1 cytokine-induced apoptosis of human IEC. Instead, we discovered that depletion of BCL-G differentially affected secretion of inflammatory chemokines CCL5 and CCL20, thus uncovering a non-apoptotic immunoregulatory function of this BCL-2 family member. Taken together, our data indicate that BCL-G may be involved in shaping immune responses in the human gut in health and disease states through regulation of chemokine secretion rather than intestinal apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Interferon gama/farmacologia , Mucosa Intestinal/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apoptose/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Quimiocina CCL20/metabolismo , Quimiocina CCL5/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Células Epiteliais/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , NF-kappa B/metabolismo , Organoides/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
17.
Cytokine Growth Factor Rev ; 47: 21-31, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133507

RESUMO

Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a chronic intestinal inflammatory condition with increasing incidence worldwide and whose pathogenesis remains largely unknown. The collected evidence indicates that genetic, environmental and microbial factors and a dysregulated immune response are responsible for the disease. IBD has an early onset and long term sufferers present a higher risk of developing colitis associated cancer (CAC). The carcinoembryonic antigen-related adhesion molecules (CEACAM) are a subgroup of the CEA family, found in a range of different cell types and organs including epithelial cells in the intestine. They can act as intercellular adhesions molecules for e.g. bacteria and soluble antigens. CEACAMs are involved in a number of different processes including cell adhesion, proliferation, differentiation and tumour suppression. Some CEACAMs such as CEACAM1, CEACAM5 and CEACAM6 are highly associated with cancer and are even recognised as valid clinical markers for certain cancer forms. However, their role in IBD pathogenesis is less understood. The purpose of this review is to provide a comprehensive summary of published literature on CEACAMs and intestinal inflammation (IBD). The interactions between CEACAMs and bacteria adhesion in relation to IBD pathophysiology will be addressed and potential new therapeutic and diagnostic opportunities will be identified.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Animais , Humanos
18.
Int J Nanomedicine ; 14: 1027-1038, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799920

RESUMO

Colorectal cancer is the abnormal growth of cells in colon or rectum. Recent findings have acknowledged the role of bacterial infection and chronic inflammation in colorectal cancer initiation and progression. In order to detect and treat precancerous lesions, new tools are required, which may help to prevent or identify colorectal cancer at an early stage. To date, several different screening tests are available, including endoscopy, stool-based blood tests, and radiology-based tests. However, these analyses either lack sensitivity or are of an invasive nature. The use of fluorescently labeled probes can increase the detection sensitivity. However, autofluorescence, photobleaching, and photodamage are commonly encountered problems with fluorescence imaging. Upconverting nanoparticles (UCNPs) are recently developed lanthanide-doped nanocrystals that can be used as light-triggered luminescent probes and in drug delivery systems. In this review, we comprehensively summarize the recent developments and address future prospects of UCNP-based applications for diagnostics and therapeutic approaches associated with intestinal infection and colorectal cancer.


Assuntos
Neoplasias Colorretais/diagnóstico , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Luminescência , Imagem Óptica , Propriedades de Superfície
19.
Microbiome ; 7(1): 7, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658700

RESUMO

BACKGROUND: A westernized diet comprising a high caloric intake from animal fats is known to influence the development of pathological inflammatory conditions. However, there has been relatively little focus upon the implications of such diets for the progression of infectious disease. Here, we investigated the influence of a high-fat (HF) diet upon parameters that influence Listeria monocytogenes infection in mice. RESULTS: We determined that short-term administration of a HF diet increases the number of goblet cells, a known binding site for the pathogen, in the gut and also induces profound changes to the microbiota and promotes a pro-inflammatory gene expression profile in the host. Host physiological changes were concordant with significantly increased susceptibility to oral L. monocytogenes infection in mice fed a HF diet relative to low fat (LF)- or chow-fed animals. Prior to Listeria infection, short-term consumption of HF diet elevated levels of Firmicutes including Coprococcus, Butyricicoccus, Turicibacter and Clostridium XIVa species. During active infection with L. monocytogenes, microbiota changes were further exaggerated but host inflammatory responses were significantly downregulated relative to Listeria-infected LF- or chow-fed groups, suggestive of a profound tempering of the host response influenced by infection in the context of a HF diet. The effects of diet were seen beyond the gut, as a HF diet also increased the sensitivity of mice to systemic infection and altered gene expression profiles in the liver. CONCLUSIONS: We adopted a systems approach to identify the effects of HF diet upon L. monocytogenes infection through analysis of host responses and microbiota changes (both pre- and post-infection). Overall, the results indicate that short-term consumption of a westernized diet has the capacity to significantly alter host susceptibility to L. monocytogenes infection concomitant with changes to the host physiological landscape. The findings suggest that diet should be a consideration when developing models that reflect human infectious disease.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Listeria monocytogenes/patogenicidade , Listeriose/etiologia , Microbiota/efeitos dos fármacos , Obesidade/genética , Animais , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Firmicutes/efeitos dos fármacos , Firmicutes/genética , Firmicutes/isolamento & purificação , Regulação da Expressão Gênica/efeitos dos fármacos , Células Caliciformes/citologia , Células Caliciformes/efeitos dos fármacos , Listeriose/genética , Listeriose/imunologia , Metagenoma/efeitos dos fármacos , Camundongos , Obesidade/complicações , Obesidade/etiologia , Análise de Sequência de DNA
20.
Appl Microbiol Biotechnol ; 102(24): 10645-10663, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30306201

RESUMO

Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain's inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.


Assuntos
Bifidobacterium animalis/crescimento & desenvolvimento , Bifidobacterium animalis/genética , Microbiologia de Alimentos/métodos , Leite/microbiologia , Animais , Bifidobacterium animalis/efeitos dos fármacos , Metabolismo dos Carboidratos , Resistência Microbiana a Medicamentos , Feminino , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Camundongos Endogâmicos BALB C , Probióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...