Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674095

RESUMO

During periodontitis, the extracellular capsule of Porphyromonas gingivalis favors alveolar bone loss by inducing Th1 and Th17 patterns of lymphocyte response in the infected periodontium. Dendritic cells recognize bacterial antigens and present them to T lymphocytes, defining their activation and polarization. Thus, dendritic cells could be involved in the Th1 and Th17 response induced against the P. gingivalis capsule. Herein, monocyte-derived dendritic cells were obtained from healthy individuals and then stimulated with different encapsulated strains of P. gingivalis or two non-encapsulated isogenic mutants. Dendritic cell differentiation and maturation were analyzed by flow cytometry. The mRNA expression levels for distinct Th1-, Th17-, or T-regulatory-related cytokines and transcription factors, as well as TLR2 and TLR4, were assessed by qPCR. In addition, the production of IL-1ß, IL-6, IL-23, and TNF-α was analyzed by ELISA. The encapsulated strains and non-encapsulated mutants of P. gingivalis induced dendritic cell maturation to a similar extent; however, the pattern of dendritic cell response was different. In particular, the encapsulated strains of P. gingivalis induced higher expression of IRF4 and NOTCH2 and production of IL-1ß, IL-6, IL-23, and TNF-α compared with the non-encapsulated mutants, and thus, they showed an increased capacity to trigger Th1 and Th17-type responses in human dendritic cells.


Assuntos
Citocinas , Células Dendríticas , Porphyromonas gingivalis , Células Th17 , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Porphyromonas gingivalis/imunologia , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Células Th17/imunologia , Células Th17/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Citocinas/metabolismo , Diferenciação Celular , Células Th1/imunologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Receptor Notch2/genética , Receptor Notch2/metabolismo , Células Cultivadas , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Oral Dis ; 29(1): 21-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34698406

RESUMO

Periodontitis is a chronic non-communicable disease caused by a dysbiotic microbiota. Pathogens can spread to the bloodstream, colonize other tissues or organs, and favor the onset of other pathologies, such as Alzheimer's disease (AD). Pathogens could permanently or transiently colonize the brain and induce an immune response. Thus, we analyzed the evidence combining oral bacteria's detection in the brain, both in animals and humans affected with AD. This systematic review was carried out following the PRISMA guideline. Studies that detected oral bacteria at the brain level were selected. The search was carried out in the Medline, Latindex, SciELO, and Cochrane Library databases. SYRCLE tool and Newcastle-Ottawa Scale were used for the risk of bias assessment. 23 studies were selected according to the eligibility criteria. Infection with oral pathogens in animals was related to developing neuropathological characteristics of AD and bacteria detection in the brain. In patients with AD, oral bacteria were detected in brain tissues, and increased levels of pro-inflammatory cytokines were also detected. There is evidence of a microbiological susceptibility to develop AD when the most dysbiosis-associated oral bacteria are present. The presence of bacteria in the brain is related to AD's pathological characteristics, suggesting an etiological oral-brain axis.


Assuntos
Doença de Alzheimer , Microbiota , Periodontite , Animais , Humanos , Periodontite/microbiologia , Bactérias , Encéfalo , Disbiose/complicações
3.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233348

RESUMO

The characteristic epigenetic profile of periodontitis found in peripheral leukocytes denotes its impact on systemic immunity. In fact, this profile not only stands for periodontitis as a low-grade inflammatory disease with systemic effects but also as an important source of potentially valuable clinical biomarkers of its systemic effects and susceptibility to other inflammatory conditions. Thus, we aimed to identify relevant genes tested as epigenetic systemic biomarkers in patients with periodontitis, based on the DNA methylation patterns and RNA expression profiles in peripheral immune cells. A detailed protocol was designed following the Preferred Reporting Items for Systematic Review and Meta-analysis -PRISMA guideline. Only cross-sectional and case-control studies that reported potential systemic biomarkers of periodontitis in peripheral immune cell types were included. DNA methylation was analyzed in leukocytes, and gene expression was in polymorphonuclear and mononuclear cells. Hypermethylation was found in TLR regulators genes: MAP3K7, MYD88, IL6R, RIPK2, FADD, IRAK1BP1, and PPARA in early stages of periodontitis, while advanced stages presented hypomethylation of these genes. TGFB1I1, VNN1, HLADRB4, and CXCL8 genes were differentially expressed in lymphocytes and monocytes of subjects with poorly controlled diabetes mellitus, dyslipidemia, and periodontitis in comparison with controls. The DAB2 gene was differentially overexpressed in periodontitis and dyslipidemia. Peripheral blood neutrophils in periodontitis showed differential expression in 163 genes. Periodontitis showed an increase in ceruloplasmin gene expression in polymorphonuclears in comparison with controls. Several genes highlight the role of the epigenetics of peripheral inflammatory cells in periodontitis that could be explored in blood as a source of biomarkers for routine testing.


Assuntos
Dislipidemias , Periodontite , Biomarcadores , Ceruloplasmina/genética , Estudos Transversais , Metilação de DNA , Dislipidemias/genética , Expressão Gênica , Humanos , Fator 88 de Diferenciação Mieloide/genética , Periodontite/genética , RNA
4.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292925

RESUMO

Periodontitis is a chronic non-communicable disease caused by dysbiotic changes that affect the subgingival microbiota. During periodontitis, neutrophils play a central role in the initial recognition of bacteria, and their number increases with the appearance of the first signs of periodontal inflammation. Recent evidence has led to the proposition that neutrophils can also functionally polarize, determining selective activity patterns related to different diseases. Two well-defined neutrophil phenotypes have been described, the pro-inflammatory N1 subset and the suppressor N2 subset. To date, it has not been established whether these different neutrophil subtypes play a role in the pathogenesis of periodontitis. Thus, this scoping review aimed to determine whether there was evidence to suggest that the neutrophils present in periodontal tissues can be associated with certain phenotypes. The research question, population, concept, and context sought to identify original articles, in humans, that detected the presence of neutrophils in the periodontal tissues of people affected by periodontitis. Based on the search strategy, we found 3658 studies. After removing the papers with abstracts not related to the outcome measures and eligibility criteria, 16 articles were included for qualitative analysis. Several studies identified the presence of different neutrophil subsets, specifically, the naive, pro- and para-inflammatory, hyper-reactive and hyper-active, and high- and low-responder phenotypes. The existing evidence demonstrates the presence of pro-inflammatory, hyper-reactive and high-responder neutrophils in periodontal tissues affected with periodontitis. There is no evidence demonstrating the presence of the N1 or N2 phenotypes in periodontal tissues during periodontitis. However, the existence of pro-inflammatory phenotypes, which increase NETosis and degranulation, and increase the production of pro-inflammatory cytokines, could be suggestive of the N1 phenotypes.


Assuntos
Neutrófilos , Periodontite , Humanos , Neutrófilos/patologia , Periodontite/microbiologia , Periodonto/patologia , Inflamação/patologia , Citocinas
5.
Odovtos (En línea) ; 24(1)abr. 2022.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1386576

RESUMO

Abstract Periodontitis is a low-grade inflammatory disease caused by a subgingival dysbiotic microbiota. Multiple studies have determined the higher prevalence of tooth loss and poor oral hygiene in patients with Alzheimer's disease (AD). However, the periodontal diagnosis, periodontal bacteria or mediators has not been measured to date. Aim: To determine the periodontal status, the pro-inflammatory mediators, Porphyromonas gingivalis load, and Apoliporpotein E (ApoE) in patients with AD. A complete dental examination was performed on 30 patients, and cognitive status was determined by the Montreal Cognitive Assessment (MoCA). Subgingival microbiota and GCF samples were then taken from all patients from the deepest sites. Total DNA was isolated from the microbiota samples for the quantification of the 16S ribosomal subunit. Pro-inflammatory mediators and ApoE were quantified from the gingival crevicular fluid (GCF). Patients with AD had periodontitis stage III-IV in 80%, a higher concentration of pro-inflammatory and ApoE mediators, and a higher P. gingivalis load compared to healthy subjects. The pro-inflammatory mediators, P. gingivalis load had a negative correlation with the MoCA test scores. Finally, a ROC curve was performed to assess the specificity and sensitivity of ApoE levels, detecting an area of 84.9%. In AD patients, we found a more severe periodontitis, a higher levels of pro-inflammatory mediators, and higher bacterial load. In addition, there is an increase in ApoE that allows to clearly determine patients with health, periodontitis and periodontitis and AD.


Resumen La periodontitis es una enfermedad crónica no transmisible que se caracteriza por generar una inflamación sistémica de bajo grado causada por una microbiota disbiótica subgingival. Múltiples estudios han determinado la mayor prevalencia de pérdida de dientes y mala higiene bucal en pacientes con enfermedad de Alzheimer (EA). Sin embargo, el diagnóstico periodontal, bacterias periodontales o mediadores pro-inflamatorio no se ha medido hasta la fecha. Determinar el estado periodontal, los mediadores pro-inflamatorios, la carga de Porphyromonas gingivalis y la apoliporpoteína E (ApoE) en pacientes con EA. Se realizó un examen odontológico completo en 30 pacientes y el estado cognitivo se determinó mediante la Evaluación Cognitiva de Montreal (MoCA). Luego, se tomaron muestras de microbiota subgingival y FCG de todos los pacientes de los sitios más profundos. Se aisló el DNA total de las muestras de microbiota para la cuantificación de la subunidad ribosómica 16S. Los mediadores pro-inflamatorios y la ApoE se cuantificaron a partir del líquido crevicular gingival (GCF). Los pacientes con EA tenían periodontitis en estadio III-IV en 80%, una mayor concentración de mediadores pro-inflamatorios y ApoE, y una mayor carga de P. gingivalis en comparación con los sujetos sanos. Los mediadores pro-inflamatorios y la carga de P. gingivalis tuvieron una correlación negativa con las puntuaciones de la prueba MoCA. Finalmente, se realizó una curva ROC para evaluar la especificidad y sensibilidad de los niveles de ApoE, detectando un área del 84,9%. En los pacientes con EA encontramos una periodontitis más severa, mayores niveles de mediadores pro-inflamatorios y mayor carga bacteriana. Además, un aumento de ApoE que permite determinar claramente a los pacientes con salud, periodontitis y periodontitis y EA.


Assuntos
Humanos , Biomarcadores/análise , Líquido do Sulco Gengival , Doença de Alzheimer , Periodontite Crônica
6.
Int Endod J ; 55(6): 672-684, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35344612

RESUMO

AIM: To describe the radicular dentine thickness in mandibular first premolars presenting C-shaped root canals, to identify the canal walls with less thickness as potential danger zones. In addition, to describe the internal and external anatomical characteristics of these teeth and associate them with the dentine thickness. METHODOLOGY: A total of 70 mandibular first premolars presenting C-shaped root canals were examined. Their internal morphology was analysed using Vertucci's and Fan's criteria, and their external morphology was analysed using the ASUDAS score. Besides, the dentine thickness around the root canals was two/three-dimensionally determined at five root planes and quantified in the distal and the mesial aspects. RESULTS: According to Fan's, ASUDAS, and Vertucci's classifications, the most common canal configurations were category C3, grade 3, and type V, respectively. In Vertucci's type III anatomy, the mesial root wall of the lingual canal showed significantly less dentine thickness than the distal wall in the middle plane (p = .031). Similarly, in Vertucci's type V anatomy, significantly less dentine thickness was observed in the mesial root wall of the buccal and lingual canals in the middle plane (p < .001) and the buccal canal in the middle-apical plane (p = .014) than the distal root wall of these canals. In teeth with ASUDAS grade 3 and 4 scores, significantly less dentine thickness was observed in the mesial in comparison with the distal root wall of these canals. These differences were demonstrated in the middle and middle-apical planes (p < .001) of grade 3 teeth and the middle-apical plane (p < .001) of grade 4 teeth. In these root planes, the Ver1-AS3 and VerV-AS3 combinations presented a 4-times greater risk of presenting walls with a critical dentine thickness of 0.6 mm (odds ratio [OR] = 4, p = .025) than the combinations Ver1-AS2, VerV-AS2, VerV-AS4, and VerIII-AS3. CONCLUSIONS: The root canal system configuration of mandibular first premolars with C-shaped canals showed a wide range of anatomical variations. The lowest dentine thickness was located in the mesial wall of the canals in the middle and apical root thirds of Vertucci's type III and V anatomies and in teeth with deep radicular grooves scored as ASUDAS grades 3 and 4. In the middle and middle-apical planes, the presence of the combinations Ver1-AS3 and VerV-AS3 showed a high risk of presenting a critical dentine thickness of 0.6 mm. Therefore, these root canal walls with less dentine thickness represent potential instrumentation danger zones in mandibular first premolars with C-shaped canals.


Assuntos
Cavidade Pulpar , Mandíbula , Dente Pré-Molar/anatomia & histologia , Dente Pré-Molar/diagnóstico por imagem , Cavidade Pulpar/anatomia & histologia , Cavidade Pulpar/diagnóstico por imagem , Dentina/diagnóstico por imagem , Mandíbula/anatomia & histologia , Mandíbula/diagnóstico por imagem , Raiz Dentária/anatomia & histologia , Raiz Dentária/diagnóstico por imagem , Microtomografia por Raio-X
7.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269683

RESUMO

Senescent cells express a senescence-associated secretory phenotype (SASP) with a pro-inflammatory bias, which contributes to the chronicity of inflammation. During chronic inflammatory diseases, infiltrating CD4+ T lymphocytes can undergo cellular senescence and arrest the surface expression of CD28, have a response biased towards T-helper type-17 (Th17) of immunity, and show a remarkable ability to induce osteoclastogenesis. As a cellular counterpart, T regulatory lymphocytes (Tregs) can also undergo cellular senescence, and CD28- Tregs are able to express an SASP secretome, thus severely altering their immunosuppressive capacities. During periodontitis, the persistent microbial challenge and chronic inflammation favor the induction of cellular senescence. Therefore, senescence of Th17 and Treg lymphocytes could contribute to Th17/Treg imbalance and favor the tooth-supporting alveolar bone loss characteristic of the disease. In the present review, we describe the concept of cellular senescence; particularly, the one produced during chronic inflammation and persistent microbial antigen challenge. In addition, we detail the different markers used to identify senescent cells, proposing those specific to senescent T lymphocytes that can be used for periodontal research purposes. Finally, we discuss the existing literature that allows us to suggest the potential pathogenic role of senescent CD4+CD28- T lymphocytes in periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Antígenos CD28 , Humanos , Inflamação , Linfócitos T Reguladores , Células Th17
8.
Mediators Inflamm ; 2021: 5573937, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594157

RESUMO

Natural killer T (NKT) cells constitute a unique subset of T lymphocytes characterized by specifically interacting with antigenic glycolipids conjugated to the CD1d receptor on antigen-presenting cells. Functionally, NKT cells are capable of performing either effector or suppressor immune responses, depending on their production of proinflammatory or anti-inflammatory cytokines, respectively. Effector NKT cells are subdivided into three subsets, termed NKT1, NKT2, and NKT17, based on the cytokines they produce and their similarity to the cytokine profile produced by Th1, Th2, and Th17 lymphocytes, respectively. Recently, a new subgroup of NKT cells termed NKT10 has been described, which cooperates and interacts with other immune cells to promote immunoregulatory responses. Although the tissue-specific functions of NKT cells have not been fully elucidated, their activity has been associated with the pathogenesis of different inflammatory diseases with immunopathogenic similarities to periodontitis, including osteolytic pathologies such as rheumatoid arthritis and osteoporosis. In the present review, we revise and discuss the pathogenic characteristics of NKT cells in these diseases and their role in the pathogenesis of periodontitis; particularly, we analyze the potential regulatory role of the IL-10-producing NKT10 cells.


Assuntos
Células T Matadoras Naturais/fisiologia , Periodontite/etiologia , Animais , Antígenos CD1d/química , Citocinas/fisiologia , Glicolipídeos/química , Humanos , Ativação Linfocitária , Células T Matadoras Naturais/citologia , Periodontite/imunologia
9.
Aging Dis ; 12(5): 1150-1161, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34341698

RESUMO

Cellular senescence is a biological process triggered in response to time-accumulated DNA damage, which prioritizes cell survival over cell function. Particularly, senescent T lymphocytes can be generated prematurely during chronic inflammatory diseases regardless of chronological aging. These senescent T lymphocytes are characterized by the loss of CD28 expression, a co-stimulatory receptor that mediates antigen presentation and effective T-cell activation. An increased number of premature senescent CD4+CD28- T lymphocytes has been frequently observed in osteolytic diseases, including rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, osteopenia, osteoporosis, and osteomyelitis. Indeed, CD4+CD28- T lymphocytes produce higher levels of osteoclastogenic molecular mediators directly related to pathologic bone loss, such as tumor necrosis factor (TNF)-α, interleukin (IL)-17A, and receptor-activator of nuclear factor κB ligand (RANKL), as compared with regular CD4+CD28+ T lymphocytes. In addition, premature senescent CD8+CD28- T lymphocytes have been negatively associated with bone healing and regeneration by inhibiting osteoblast differentiation and mesenchymal stromal cell survival. Therefore, accumulated evidence supports the role of senescent T lymphocytes in osteoimmunology. Moreover, premature senescence of T-cells seems to be associated with the functional imbalance between the osteolytic T-helper type-17 (Th17) and bone protective T regulatory (Treg) lymphocytes, as well as the phenotypic instability of Treg lymphocytes responsible for its trans-differentiation into RANKL-producing exFoxp3Th17 cells, a key cellular phenomenon directly related to bone loss. Herein, we present a framework for the understanding of the pathogenic characteristics of T lymphocytes with a premature senescent phenotype; and particularly, we revise and discuss their role in the osteoimmunology of osteolytic diseases.

10.
Front Immunol ; 12: 663328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220811

RESUMO

Periodontitis is an oral inflammatory disease in which the polymicrobial synergy and dysbiosis of the subgingival microbiota trigger a deregulated host immune response, that leads to the breakdown of tooth-supporting tissues and finally tooth loss. Periodontitis is characterized by the increased pathogenic activity of T helper type 17 (Th17) lymphocytes and defective immunoregulation mediated by phenotypically unstable T regulatory (Treg), lymphocytes, incapable of resolving the bone-resorbing inflammatory milieu. In this context, the complexity of the immune response orchestrated against the microbial challenge during periodontitis has made the study of its pathogenesis and therapy difficult and limited. Indeed, the ethical limitations that accompany human studies can lead to an insufficient etiopathogenic understanding of the disease and consequently, biased treatment decision-making. Alternatively, animal models allow us to manage these difficulties and give us the opportunity to partially emulate the etiopathogenesis of periodontitis by inoculating periodontopathogenic bacteria or by placing bacteria-accumulating ligatures around the teeth; however, these models still have limited translational application in humans. Accordingly, humanized animal models are able to emulate human-like complex networks of immune responses by engrafting human cells or tissues into specific strains of immunodeficient mice. Their characteristics enable a viable time window for the study of the establishment of a specific human immune response pattern in an in vivo setting and could be exploited for a wider study of the etiopathogenesis and/or treatment of periodontitis. For instance, the antigen-specific response of human dendritic cells against the periodontopathogen Porphyromonas gingivalis favoring the Th17/Treg response has already been tested in humanized mice models. Hypothetically, the proper emulation of periodontal dysbiosis in a humanized animal could give insights into the subtle molecular characteristics of a human-like local and systemic immune response during periodontitis and support the design of novel immunotherapeutic strategies. Therefore, the aims of this review are: To elucidate how the microbiota-elicited immunopathogenesis of periodontitis can be potentially emulated in humanized mouse models, to highlight their advantages and limitations in comparison with the already available experimental periodontitis non-humanized animal models, and to discuss the potential translational application of using these models for periodontitis immunotherapeutics.


Assuntos
Modelos Animais de Doenças , Suscetibilidade a Doenças , Camundongos Transgênicos , Periodontite/etiologia , Animais , Gerenciamento Clínico , Suscetibilidade a Doenças/imunologia , Interações entre Hospedeiro e Microrganismos , Humanos , Hospedeiro Imunocomprometido , Transfusão de Linfócitos , Camundongos , Microbiota , Transplante de Órgãos , Periodontite/patologia , Periodontite/terapia , Transplante de Células-Tronco
11.
Med. oral patol. oral cir. bucal (Internet) ; 26(1): e43-e48, ene. 2021. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-200537

RESUMO

BACKGROUND: Alzheimer's disease (AD), the main cause of dementia in the adult population, is characterized by a progressive loss of cognitive function. It is considered that neuroinflammation plays a fundamental role in its onset and progression. The bacteria present in the disbiotic microbiome generated during the course of periodontitis (PE) are capable of inducing a systemic inflammatory response, exacerbating the production of proinflammatory mediators that have the potential to spread to the systemic circulation. MATERIAL AND METHODS: A literature review was made using the databases Scielo, PubMed, EBSCO and key words "Alzheimer disease", "Periodontitis", "Neurodegeneration", "Inflammation mediators", "Elderly". RESULTS: Several hypotheses point to similar pathophysiological pathways in the establishment of AD and PE, sharing cellular and molecular proinflammatory characteristics. In periodontitis, locally produced cytokines and pro-inflammatory products spread from the ulcerated periodontal pocket into the systemic circulation, or around the trigeminal nerve terminals, which allows the passage of bacteria or their products to the brain. This fact leads to the formation of plaques of amyloid peptide and intraneuronal neurofibrillar tangles (NFTs) that activate the glial cells producing a significant increase in proinflammatory cytokines in the affected regions that lead to a loss of neuronal synapses and neurodegeneration, contributing to the progression of AD. CONCLUSIONS: This review of the literature contributes to the understanding of the pathological pathways shared by both diseases such as oxidative damage and inflammation. There is not enough evidence to determine an association between this two pathologies, so it is considered necessary to conduct studies for determine if periodontitis is capable of inducing or exacerbating the neuroinflammation that will trigger AD


No disponible


Assuntos
Humanos , Idoso , Idoso de 80 Anos ou mais , Periodontite/metabolismo , Doença de Alzheimer/metabolismo , Inflamação/metabolismo , Doença de Alzheimer/fisiopatologia , Periodontite/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucinas/metabolismo , Peptídeos beta-Amiloides/metabolismo
12.
Front Aging ; 2: 781582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35822001

RESUMO

Periodontitis is considered a non-communicable chronic disease caused by a dysbiotic microbiota, which generates a low-grade systemic inflammation that chronically damages the organism. Several studies have associated periodontitis with other chronic non-communicable diseases, such as cardiovascular or neurodegenerative diseases. Besides, the oral bacteria considered a keystone pathogen, Porphyromonas gingivalis, has been detected in the hippocampus and brain cortex. Likewise, gut microbiota dysbiosis triggers a low-grade systemic inflammation, which also favors the risk for both cardiovascular and neurodegenerative diseases. Recently, the existence of an axis of Oral-Gut communication has been proposed, whose possible involvement in the development of neurodegenerative diseases has not been uncovered yet. The present review aims to compile evidence that the dysbiosis of the oral microbiota triggers changes in the gut microbiota, which creates a higher predisposition for the development of neuroinflammatory or neurodegenerative diseases.The Oral-Gut-Brain axis could be defined based on anatomical communications, where the mouth and the intestine are in constant communication. The oral-brain axis is mainly established from the trigeminal nerve and the gut-brain axis from the vagus nerve. The oral-gut communication is defined from an anatomical relation and the constant swallowing of oral bacteria. The gut-brain communication is more complex and due to bacteria-cells, immune and nervous system interactions. Thus, the gut-brain and oral-brain axis are in a bi-directional relationship. Through the qualitative analysis of the selected papers, we conclude that experimental periodontitis could produce both neurodegenerative pathologies and intestinal dysbiosis, and that periodontitis is likely to induce both conditions simultaneously. The severity of the neurodegenerative disease could depend, at least in part, on the effects of periodontitis in the gut microbiota, which could strengthen the immune response and create an injurious inflammatory and dysbiotic cycle. Thus, dementias would have their onset in dysbiotic phenomena that affect the oral cavity or the intestine. The selected studies allow us to speculate that oral-gut-brain communication exists, and bacteria probably get to the brain via trigeminal and vagus nerves.

13.
J Periodontol ; 92(1): 123-136, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32490537

RESUMO

BACKGROUND: During periodontitis, tooth-supporting alveolar bone is resorbed when there is an increased expression of the pro-osteolytic factor termed receptor activator of nuclear factor κB ligand (RANKL), which is responsible for osteoclast differentiation and activation. In periodontitis-affected tissues, the imbalance between T-helper type-17 (Th17) and T-regulatory (Treg) lymphocyte activity favors this RANKL overexpression. In this context, immunotherapeutic strategies aimed at modulating this Th17/Treg imbalance could eventually arrest the RANKL-mediated alveolar bone loss. Boldine has been reported to protect from pathological bone loss during rheumatoid arthritis and osteoporosis, whose pathogenesis is associated with a Th17/Treg imbalance. However, the effect of boldine on alveolar bone resorption during periodontitis has not been elucidated yet. This study aimed to determine whether boldine inhibits alveolar bone resorption by modulating the Th17/Treg imbalance during periodontitis. METHODS: Mice with ligature-induced periodontitis were orally treated with boldine (10/20/40 mg/kg) for 15 consecutive days. Non-treated periodontitis-affected mice and non-ligated mice were used as controls. Alveolar bone loss was analyzed by micro-computed tomography and scanning electron microscopy. Osteoclasts were quantified by histological identification of tartrate-resistant acid phosphatase-positive cells. Production of RANKL and its competitive antagonist osteoprotegerin (OPG) were analyzed by ELISA, quantitative polymerase chain reaction (qPCR), and immunohistochemistry. The Th17 and Treg responses were analyzed by quantifying the T-cell frequency and number by flow cytometry. Also, the expression of their signature transcription factors and cytokines were quantified by qPCR. RESULTS: Boldine inhibited the alveolar bone resorption. Consistently, boldine caused a decrease in the osteoclast number and RANKL/OPG ratio in periodontal lesions. Besides, boldine reduced the Th17-lymphocyte detection and response and increased the Treg-lymphocyte detection and response in periodontitis-affected tissues. CONCLUSION: Boldine, administered orally, inhibited the alveolar bone resorption and modulated the Th17/Treg imbalance during experimental periodontitis.


Assuntos
Perda do Osso Alveolar , Reabsorção Óssea , Periodontite , Perda do Osso Alveolar/prevenção & controle , Animais , Aporfinas , Camundongos , Osteoclastos , Osteoprotegerina , Periodontite/tratamento farmacológico , Ligante RANK , Linfócitos T Reguladores , Microtomografia por Raio-X
14.
Front Immunol ; 11: 588036, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240277

RESUMO

Periodontal disease is a disease of tooth-supporting tissues. It is a chronic disease with inflammatory nature and infectious etiology produced by a dysbiotic subgingival microbiota that colonizes the gingivodental sulcus. Among several periodontal bacteria, Porphyromonas gingivalis (P. gingivalis) highlights as a keystone pathogen. Previous reports have implied that chronic inflammatory response and measurable bone resorption are observed in young mice, even after a short period of periodontal infection with P. gingivalis, which has been considered as a suitable model of experimental periodontitis. Also, encapsulated P. gingivalis strains are more virulent than capsular-defective mutants, causing an increased immune response, augmented osteoclastic activity, and accrued alveolar bone resorption in these rodent experimental models of periodontitis. Recently, P. gingivalis has been associated with Alzheimer's disease (AD) pathogenesis, either by worsening brain pathology in AD-transgenic mice or by inducing memory impairment and age-dependent neuroinflammation middle-aged wild type animals. We hypothesized here that the more virulent encapsulated P. gingivalis strains could trigger the appearance of brain AD-markers, neuroinflammation, and cognitive decline even in young rats subjected to a short periodontal infection exposure, due to their higher capacity of activating brain inflammatory responses. To test this hypothesis, we periodontally inoculated 4-week-old male Sprague-Dawley rats with K1, K2, or K4 P. gingivalis serotypes and the K1-isogenic non-encapsulated mutant (GPA), used as a control. 45-days after periodontal inoculations with P. gingivalis serotypes, rat´s spatial memory was evaluated for six consecutive days in the Oasis maze task. Following functional testing, the animals were sacrificed, and various tissues were removed to analyze alveolar bone resorption, cytokine production, and detect AD-specific biomarkers. Strikingly, only K1 or K2 P. gingivalis-infected rats displayed memory deficits, increased alveolar bone resorption, pro-inflammatory cytokine production, changes in astrocytic morphology, increased Aß1-42 levels, and Tau hyperphosphorylation in the hippocampus. None of these effects were observed in rats infected with the non-encapsulated bacterial strains. Based on these results, we propose that the bacterial virulence factors constituted by capsular polysaccharides play a central role in activating innate immunity and inflammation in the AD-like pathology triggered by P. gingivalis in young rats subjected to an acute experimental infection episode.


Assuntos
Doença de Alzheimer , Infecções por Bacteroidaceae , Periodontite , Porphyromonas gingivalis , Animais , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/microbiologia , Reabsorção Óssea , Citocinas/imunologia , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/microbiologia , Aprendizagem , Peroxidação de Lipídeos , Masculino , Periodontite/imunologia , Periodontite/metabolismo , Periodontite/microbiologia , Ratos Sprague-Dawley , Sorogrupo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
15.
J Clin Periodontol ; 47(6): 676-688, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32160331

RESUMO

AIM: T lymphocytes play a central role during the pathogenesis of periodontitis, and the imbalance between the pathogenic T-helper type 17 (Th17) and protective T-regulatory (Treg) lymphocytes determines the tooth-supporting alveolar bone resorption. Interleukin (IL)-35 is a novel anti-inflammatory cytokine with therapeutic properties in diseases whose pathogenesis is associated with the Th17/Treg imbalance; however, its role during periodontitis has not been established yet. This study aimed to elucidate whether IL-35 inhibits the alveolar bone resorption during periodontitis by modulating the Th17/Treg imbalance. MATERIALS AND METHODS: Mice with ligature-induced periodontitis were treated with locally or systemically administrated IL-35. As controls, periodontitis-affected mice without IL-35 treatment and non-ligated mice were used. Alveolar bone resorption was measured by micro-computed tomography and scanning electron microscopy. The Th17/Treg pattern of the immune response was analysed by qPCR, ELISA, and flow cytometry. RESULTS: IL-35 inhibited alveolar bone resorption in periodontitis mice. Besides, IL-35 induced less detection of Th17 lymphocytes and production of Th17-related cytokines, together with higher detection of Treg lymphocytes and production of Treg-related cytokines in periodontitis-affected tissues. CONCLUSION: IL-35 is beneficial in the regulation of periodontitis; particularly, IL-35 inhibited alveolar bone resorption and this inhibition was closely associated with modulation of the periodontal Th17/Treg imbalance.


Assuntos
Perda do Osso Alveolar , Periodontite , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/prevenção & controle , Animais , Interleucinas , Camundongos , Linfócitos T Reguladores , Células Th17 , Microtomografia por Raio-X
16.
Oral Dis ; 26(2): 409-418, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31738464

RESUMO

OBJECTIVE: The serotype b of Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) induces higher cytokine production in dendritic cells (DCs) compared with the other serotypes. However, this increased immunostimulatory potential was modified when DCs were co-infected with the other A. actinomycetemcomitans serotypes. This study aimed to analyze whether the production of interferon gamma (IFN-γ), C-reactive protein (CRP), matrix metalloproteinase (MMP)-2, and MMP-9, as well as the activity of osteoclasts, also varies when DCs are co-infected with the A. actinomycetemcomitans serotypes. MATERIALS AND METHODS: Human DCs were stimulated with the A. actinomycetemcomitans serotypes using the following stimulatory conditions: serotype a/b/c/a+b/a+c/b+c/a+b+c. The IFN-γ, CRP, and MMP-2 levels were quantified by ELISA. The active form of MMP-9 was quantified using fluorescent functional assays. The MMP-2 gelatinolytic activity was identified by zymogram. The osteoclast activity was determined by quantifying the TRAP expression and resorption-pit formation using cytochemistry and osteoassays. RESULTS: Higher levels of IFN-γ, CRP, MMP-2, MMP-9, and osteoclast activity were detected when DCs were stimulated with the serotype b of A. actinomycetemcomitans compared with the others. This increased immunostimulatory potential attributed to serotype b diminished when DCs were co-infected with the serotype a. CONCLUSIONS: This study provides new insights into the virulence of A. actinomycetemcomitans and reveals important differences in the immunostimulatory and pro-destructive potential among its serotypes.


Assuntos
Aggregatibacter actinomycetemcomitans/classificação , Aggregatibacter actinomycetemcomitans/patogenicidade , Células Dendríticas/microbiologia , Proteína C-Reativa/metabolismo , Humanos , Interferon gama/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Osteoclastos , Sorogrupo
17.
Arch Oral Biol ; 93: 155-162, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29929057

RESUMO

OBJECTIVE: In Aggregatibacter actinomycetemcomitans, different serotypes have been described based on LPS antigenicity. Mixed infection with the different A. actinomycetemcomitans serotypes is frequent in periodontitis patients; accordingly, the role of this bacterial species in the pathogenesis of periodontitis may differ depending whether patients or periodontal lesions harbour one or more of the A. actinomycetemcomitans serotypes. We hypothesized that different combinations of these serotypes could be associated with distinct host responses and hence different inflammatory patterns. This investigation was aimed to assess whether the increased immuno-stimulatory potential attributed to the serotype b of A. actinomycetemcomitans on immune cells is able to be modified during co-infection with other A. actinomycetemcomitans serotypes. METHODS: Dendritic cells (DCs) were obtained from healthy subjects and stimulated with the different A. actinomycetemcomitans serotypes or their purified LPS using the following stimulatory conditions: serotype a, b, or c, and the combinations a+b, a+c, b+c, or a+b+c. The cytokine, CCR, and CCL levels were quantified by qPCR and ELISA. RESULTS: Higher levels of cytokines, CCRs, and CCLs were induced when DCs were stimulated with the serotype b of A. actinomycetemcomitans compared with the same cells stimulated with the other serotypes. When DCs were co-infected, these levels decreased in comparison with the serotype b-stimulation alone, in particular when the serotype a was present in the mixed infection. CONCLUSIONS: The increased immuno-stimulatory potential attributed to the serotype b was modified when DCs were co-infected with other A. actinomycetemcomitans serotypes, in particular, when the serotype a was present, the DC response diminished.


Assuntos
Aggregatibacter actinomycetemcomitans/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Adulto , Quimiocinas/imunologia , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Lipopolissacarídeos , Masculino , Reação em Cadeia da Polimerase , Sorogrupo
18.
Arch Oral Biol ; 78: 26-33, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28189882

RESUMO

OBJECTIVE: In Aggregatibacter actinomycetemcomitans, different serotypes have been described based on lipopolysaccharide (LPS) antigenicity. When T lymphocytes were stimulated with these serotypes, different patterns of T-helper (Th)1 and Th17-type of immune responses were reported. Recently, two new Th phenotypes have been described and named Th9 and Th22 lymphocytes; however, their role in the pathogenesis of periodontitis remains unclear. This study aimed to investigate the potential Th9 and/or Th22 lymphocyte responses when stimulated with autologous dendritic cells infected with different A. actinomycetemcomitans serotypes. METHODS: Monocyte-derived dendritic cells and naïve CD4+ T lymphocytes were obtained from healthy donors and stimulated with different serotypes of A. actinomycetemcomitans at a multiplicity of infection MOI=102 or their purified LPS (10-50ng/ml). The levels for the Th9 and Th22-associated cytokines, as well as the transcription factor master-switch genes implied in their differentiation Spi-B and AhR, were quantified by qPCR and ELISA. RESULTS: When stimulated with the serotype b of A. actinomycetemcomitans, higher levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were detected in dendritic cells, as well as higher levels of IL-22 and AhR were detected in T lymphocytes, when compared with stimulation with the other serotypes. CONCLUSIONS: The serotype b of A. actinomycetemcomitans has a higher capacity of trigger Th22-type of immune response in both dendritic cells and T lymphocytes. These data allow us to suggest that, when the serotype b of A. actinomycetemcomitans is a significant part of the subgingival biofilm, the Th22 polarization might be triggered within the periodontal lesion.


Assuntos
Aggregatibacter actinomycetemcomitans/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Aggregatibacter actinomycetemcomitans/patogenicidade , Biofilmes , Diferenciação Celular , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Fenótipo , Sorogrupo , Células Th17 , Fatores de Virulência
19.
J Periodontol ; 86(1): 108-19, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25224175

RESUMO

BACKGROUND: Different serotypes of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis have been shown to induce differential dendritic cell (DC) responses. This study investigates whether cytokine and CC-chemokine receptor (CCR) production by DCs stimulated with different serotypes of A. actinomycetemcomitans or P. gingivalis is Toll-like receptor 2 (TLR2) and/or TLR4 dependent. METHODS: DCs were obtained from healthy individuals and primed at a multiplicity of infection (MOI) of 10(2) with different A. actinomycetemcomitans or P. gingivalis serotypes in the presence or absence of anti-TLR2 or anti-TLR4 blocking antibodies. TLR2 and TLR4 expression, CCR5 and CCR6 expression, and interleukin (IL)-1ß, IL-10, IL-12, and IL-23 expression and secretion were quantified by flow cytometry, real-time reverse-transcription polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS: When DCs were stimulated with serotype b of A. actinomycetemcomitans or serotype K1 of P. gingivalis, higher levels of TLR2 or TLR4, respectively, were detected compared to DCs stimulated with the other serotypes. Similarly, higher levels of cytokines and CCRs were detected in serotype b- or serotype K1-primed DCs compared to the others, and these increased levels positively correlated with levels of TLR2 or TLR4. When TLR2 signaling was blocked using a specific anti-TLR2 monoclonal antibody, serotype b-induced cytokine and CCR expression was inhibited; when TLR4 signaling was blocked, serotype K1-induced response was inhibited. CONCLUSIONS: These results demonstrate that the variability of secretion of cytokines and expression of CCRs detected in DCs stimulated with different serotypes of A. actinomycetemcomitans or P. gingivalis is TLR2 or TLR4 dependent, respectively.


Assuntos
Aggregatibacter actinomycetemcomitans/imunologia , Células Dendríticas/microbiologia , Porphyromonas gingivalis/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Adulto , Aggregatibacter actinomycetemcomitans/classificação , Carga Bacteriana , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Células Cultivadas , Células Dendríticas/imunologia , Feminino , Humanos , Interleucina-10/análise , Interleucina-12/análise , Interleucina-1beta/análise , Interleucina-23/análise , Masculino , Monócitos/fisiologia , Porphyromonas gingivalis/classificação , Receptores CCR5/análise , Receptores CCR6/análise , Sorogrupo , Receptor 2 Toll-Like/análise , Receptor 4 Toll-Like/análise , Adulto Jovem
20.
J Clin Periodontol ; 41(5): 451-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24476556

RESUMO

AIM: Destructive periodontitis is associated with a Th1-Th17 immune response and activation of RANKL-induced osteoclasts. In addition, Porphyromonas gingivalis K1 and K2 serotypes induce a strong Th1-Th17 response. This study aimed to investigate whether these P. gingivalis serotypes induce higher osteoclasts activation, by increased Th17-associated RANKL production, and an antigen-specific memory T-lymphocyte response. MATERIAL AND METHODS: The RANKL production and TRAP(+) osteoclast induction were quantified on naïve T lymphocytes stimulated with dendritic cells primed with the P. gingivalis serotypes. The T-bet, GATA-3, RORC2 and Foxp3 expression was correlated with RANKL production. The frequency of proliferating memory T lymphocytes in response to P. gingivalis serotypes was determined in both periodontitis and healthy subjects. RESULTS: T lymphocytes stimulated by K1 or K2-primed dendritic cells elicited higher levels of RANKL and TRAP(+) osteoclasts than cells stimulated with the other serotypes. RANKL positively correlated with RORC2. Whereas periodontitis patients had a higher frequency of memory T lymphocytes responding to K1 or K2, healthy subjects had a higher frequency of memory T lymphocytes responding to K4 or K(-) . CONCLUSIONS: P. gingivalis serotypes K1 and K2, but not others, are associated with an increased production of the osteoclastogenesis-related factor RANKL. This important information suggests that these serotypes could elicit a greater bone resorption in vivo and have a role in the periodontitis pathogenesis.


Assuntos
Memória Imunológica/imunologia , Osteoclastos/imunologia , Porphyromonas gingivalis/imunologia , Ligante RANK/imunologia , Sorogrupo , Linfócitos T/imunologia , Fosfatase Ácida/análise , Fosfatase Ácida/imunologia , Animais , Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Diferenciação Celular/imunologia , Linhagem Celular , Periodontite Crônica/imunologia , Seleção Clonal Mediada por Antígeno , Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/análise , Fator de Transcrição GATA3/análise , Humanos , Isoenzimas/análise , Isoenzimas/imunologia , Macrófagos/imunologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/análise , Osteoclastos/efeitos dos fármacos , Porphyromonas gingivalis/classificação , Ligante RANK/análise , Proteínas com Domínio T/análise , Linfócitos T/microbiologia , Fosfatase Ácida Resistente a Tartarato , Células Th1/imunologia , Células Th17/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...