Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951656

RESUMO

OBJECTIVES: Hepatic ischemia and hypoxia are accompanied by reduced bile flow, biliary sludge and cholestasis. Hepatobiliary transport systems, nuclear receptors and aquaporins were studied after hypoxia and reoxygenation in human hepatic cells. METHODS: Expression of Aquaporin 8 (AQP8), Aquaporin 9 (AQP9), Pregnane X receptor (PXR), Farnesoid X receptor (FXR), Organic anion transporting polypeptide 1 (OATP1), and the Multidrug resistance-associated protein 4 (MRP4) were investigated in induced pluripotent stem cells (iPSCs) derived hepatic cells and the immortalized hepatic line HepG2. HepG2 was subjected to combined oxygen and glucose deprivation for 4 h followed by reoxygenation. RESULTS: Expression of AQP8 and AQP9 increased during differentiation in iPSC-derived hepatic cells. Hypoxia did not alter mRNA levels of AQP8, but reoxygenation caused a marked increase in AQP8 mRNA expression. While expression of OATP1 had a transient increase during reoxygenation, MRP4 showed a delayed downregulation. Knock-down of FXR did not alter the expression of AQP8, AQP9, MRP4, or OATP1. Post-hypoxic protein levels of AQP8 were reduced after 68 h of reoxygenation compared to normoxic controls. CONCLUSIONS: Post-transcriptional mechanisms rather than reduced transcription cause reduction in AQP8 protein concentration after hypoxia-reoxygenation in hepatic cells. Expression patterns differed between hepatobiliary transport systems during hypoxia and reoxygenation. IMPACT: Expression of AQP8 and AQP9 increased during differentiation in induced pluripotent stem cells. Expression of hepatobiliary transporters varies during hypoxia and reoxygenation. Post-hypoxic protein levels of AQP8 were reduced after 68 h of reoxygenation. Post-transcriptional mechanisms rather than reduced transcription cause reduction in AQP8 protein concentration after hypoxia-reoxygenation in hepatic cells. Hypoxia and reoxygenation may affect aquaporins in hepatic cells and potentially affect bile composition.

2.
J Hepatol ; 79(4): 945-954, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37328071

RESUMO

BACKGROUND & AIMS: Lymphedema cholestasis syndrome 1 or Aagenaes syndrome is a condition characterized by neonatal cholestasis, lymphedema, and giant cell hepatitis. The genetic background of this autosomal recessive disease was unknown up to now. METHODS: A total of 26 patients with Aagenaes syndrome and 17 parents were investigated with whole-genome sequencing and/or Sanger sequencing. PCR and western blot analyses were used to assess levels of mRNA and protein, respectively. CRISPR/Cas9 was used to generate the variant in HEK293T cells. Light microscopy, transmission electron microscopy and immunohistochemistry for biliary transport proteins were performed in liver biopsies. RESULTS: One specific variant (c.-98G>T) in the 5'-untranslated region of Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome. Nineteen were homozygous for the c.-98G>T variant and seven were compound heterozygous for the variant in the 5'-untranslated region and an exonic loss-of-function variant in UNC45A. Patients with Aagenaes syndrome exhibited lower expression of UNC45A mRNA and protein than controls, and this was reproduced in a CRISPR/Cas9-created cell model. Liver biopsies from the neonatal period demonstrated cholestasis, paucity of bile ducts and pronounced formation of multinucleated giant cells. Immunohistochemistry revealed mislocalization of the hepatobiliary transport proteins BSEP (bile salt export pump) and MRP2 (multidrug resistance-associated protein 2). CONCLUSIONS: c.-98G>T in the 5'-untranslated region of UNC45A is the causative genetic variant in Aagenaes syndrome. IMPACT AND IMPLICATIONS: The genetic background of Aagenaes syndrome, a disease presenting with cholestasis and lymphedema in childhood, was unknown until now. A variant in the 5'-untranslated region of the Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome, providing evidence of the genetic background of the disease. Identification of the genetic background provides a tool for diagnosis of patients with Aagenaes syndrome before lymphedema is evident.


Assuntos
Colestase , Peptídeos e Proteínas de Sinalização Intracelular , Linfedema , Humanos , Recém-Nascido , Regiões 5' não Traduzidas/genética , Proteínas de Transporte/genética , Colestase/genética , Células HEK293 , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfedema/diagnóstico , Linfedema/genética , Linfedema/metabolismo , Miosinas/genética , Miosinas/metabolismo
3.
Biology (Basel) ; 12(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37106749

RESUMO

Birth asphyxia is the leading cause of death and disability in young children worldwide. Long non-coding RNAs (lncRNAs) may provide novel targets and intervention strategies due to their regulatory potential, as demonstrated in various diseases and conditions. We investigated cardinal lncRNAs involved in oxidative stress, hypoxia, apoptosis, and DNA damage using a piglet model of perinatal asphyxia. A total of 42 newborn piglets were randomized into 4 study arms: (1) hypoxia-normoxic reoxygenation, (2) hypoxia-3 min of hyperoxic reoxygenation, (3) hypoxia-30 min of hyperoxic reoxygenation, and (4) sham-operated controls. The expression of lncRNAs BDNF-AS, H19, MALAT1, ANRIL, TUG1, and PANDA, together with the related target genes VEGFA, BDNF, TP53, HIF1α, and TNFα, was assessed in the cortex, the hippocampus, the white matter, and the cerebellum using qPCR and Droplet Digital PCR. Exposure to hypoxia-reoxygenation significantly altered the transcription levels of BDNF-AS, H19, MALAT1, and ANRIL. BDNF-AS levels were significantly enhanced after both hypoxia and subsequent hyperoxic reoxygenation, 8% and 100% O2, respectively. Our observations suggest an emerging role for lncRNAs as part of the molecular response to hypoxia-induced damages during perinatal asphyxia. A better understanding of the regulatory properties of BDNF-AS and other lncRNAs may reveal novel targets and intervention strategies in the future.

4.
J Vis Exp ; (191)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36715405

RESUMO

Neonatal piglets have been extensively used as translational models for perinatal asphyxia. In 2007, we adapted a well-established piglet asphyxia model by introducing cardiac arrest. This enabled us to study the impact of severe asphyxia on key outcomes, including the time taken for the return of spontaneous circulation (ROSC), as well as the effect of chest compressions according to alternative protocols for cardiopulmonary resuscitation. Due to the anatomical and physiological similarities between piglets and human neonates, piglets serve as good models in studies of cardiopulmonary resuscitation and hemodynamic monitoring. In fact, this cardiac arrest model has provided evidence for guideline development through research on resuscitation protocols, pathophysiology, biomarkers, and novel methods for hemodynamic monitoring. Notably, the incidental finding that a substantial fraction of piglets have pulseless electrical activity (PEA) during cardiac arrest may increase the applicability of the model (i.e., it may be used to study pathophysiology extending beyond the perinatal period). However, the model generation is technically challenging and requires various skill sets, dedicated personnel, and a fine balance of the measures, including the surgical protocols and the use of sedatives/analgesics, to ensure a reasonable rate of survival. In this paper, the protocol is described in detail, as well as experiences with adaptations to the protocol over the years.


Assuntos
Asfixia Neonatal , Reanimação Cardiopulmonar , Parada Cardíaca , Animais , Suínos , Humanos , Recém-Nascido , Asfixia , Retorno da Circulação Espontânea , Parada Cardíaca/terapia , Hemodinâmica , Reanimação Cardiopulmonar/métodos , Asfixia Neonatal/terapia , Modelos Animais de Doenças
5.
Mol Biol Rep ; 50(2): 1533-1544, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36512170

RESUMO

BACKGROUND: Since the discovery more than half a century ago, cell-free DNA (cfDNA) has become an attractive objective in multiple diagnostic, prognostic, and monitoring settings. However, despite the increasing number of cfDNA applications in liquid biopsies, we still lack a comprehensive understanding of the nature of cfDNA including optimal assessment. In the presented study, we continued testing and validation of common techniques for cfDNA extraction and quantification (qRT-PCR or droplet digital PCR) of nuclear- and mitochondrial cfDNA (ncfDNA and mtcfDNA) in blood, using a piglet model of perinatal asphyxia to determine potential temporal and quantitative changes at the levels of cfDNA. METHODS AND RESULTS: Newborn piglets (n = 19) were either exposed to hypoxia (n = 11) or were part of the sham-operated control group (n = 8). Blood samples were collected at baseline (= start) and at the end of hypoxia or at 40-45 min for the sham-operated control group. Applying the qRT-PCR method, ncfDNA concentrations in piglets exposed to hypoxia revealed an increasing trend from 7.1 ng/ml to 9.5 ng/ml for HK2 (hexokinase 2) and from 4.6 ng/ml to 7.9 ng/ml for ß-globulin, respectively, whereas the control animals showed a more balanced profile. Furthermore, median levels of mtcfDNA were much higher in comparison to ncfDNA, but without significant differences between intervention versus the control group. CONCLUSIONS: Both, qRT-PCR and the droplet digital PCR technique identified overall similar patterns for the concentration changes of cfDNA; but, the more sensitive digital PCR methodology might be required to identify minimal responses.


Assuntos
Ácidos Nucleicos Livres , Animais , Suínos , Ácidos Nucleicos Livres/genética , Asfixia , Reação em Cadeia da Polimerase/métodos , Biópsia Líquida , Hipóxia
6.
Pediatr Res ; 89(7): 1780-1787, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32932426

RESUMO

BACKGROUND: Circulatory miRNAs are promising biomarkers. The feasibility of using miRNA from dried blood spots (DBS) was investigated using newborn screening cards from patients with cholestasis-lymphedema syndrome (Aagenaes syndrome) and controls. METHODS: Total amount of miRNA and specific miRNAs from DBS were analyzed. miRNA was also obtained from newborn screening cards in patients with cholestasis-lymphedema syndrome/Aagenaes syndrome and in healthy newborns. RESULTS: No differences in miRNA concentrations were found between multispotted samples and samples with one single drop of blood and between central and peripheral punches. Ten repeated freeze-thaw cycles did not significantly change miRNA levels from controls. miR-299 (1.73-fold change, p = 0.034) and miR-365 (1.46-fold change, p = 0.011) were upregulated and miR-30c (0.72-fold change, p = 0.0037), miR-652 (0.85-fold change, p = 0.025), and miR-744 (0.72-fold change, p = 0.0069) were downregulated in patients with Aagenaes syndrome at birth compared to controls. CONCLUSIONS: miRNAs were not affected by multispotting or punch location and were stable throughout repeated freeze-thaw cycles. miRNA in dried blood spots could be used to detect differential expression of miRNA in newborns with Aagenaes syndrome and healthy controls in newborn screening cards. Dried blood spots may be a useful source to explore circulating miRNA as biomarkers. IMPACT: Circulating miRNAs can be useful biomarkers. miRNAs from dried blood spots were not affected by multispotting or punch location and were stable throughout repeated freeze-thaw cycles. Discrimination between patients and controls are allowed even with few individuals. Early after birth, patients with cholestasis-lymphedema syndrome exhibit miRNA profiles associated with liver fibrosis. This study demonstrated that newborn screening cards may be a useful source for studying miRNA as the technical variability is smaller than biological variation.


Assuntos
Colestase/sangue , Teste em Amostras de Sangue Seco , Linfedema/sangue , MicroRNAs/sangue , Biomarcadores/sangue , Colestase/genética , Feminino , Humanos , Recém-Nascido , Linfedema/genética , Masculino , Triagem Neonatal/métodos
7.
Cancers (Basel) ; 11(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717152

RESUMO

The majority of colorectal cancers are induced by subsequent mutations in APC and KRAS genes leading to aberrant activation of both canonical WNT and RAS signaling. However, due to induction of feedback rescue mechanisms some cancers do not respond well to targeted inhibitor treatments. In this study we show that the APC and KRAS mutant human colorectal cancer cell line HCT-15 induces canonical WNT signaling through YAP in a MEK dependent mechanism. This inductive loop is disrupted with combined tankyrase (TNKS) and MEK inhibition. RNA sequencing analysis suggests that combined TNKS/MEK inhibition induces metabolic stress responses in HCT-15 cells promoting a positive FOXO3/FOXM1 ratio to reduce antioxidative and cryoprotective systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...