Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioinform ; 22022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36187180

RESUMO

The rapid and accurate in silico prediction of protein-ligand binding free energies or binding affinities has the potential to transform drug discovery. In recent years, there has been a rapid growth of interest in deep learning methods for the prediction of protein-ligand binding affinities based on the structural information of protein-ligand complexes. These structure-based scoring functions often obtain better results than classical scoring functions when applied within their applicability domain. Here we review structure-based scoring functions for binding affinity prediction based on deep learning, focussing on different types of architectures, featurization strategies, data sets, methods for training and evaluation, and the role of explainable artificial intelligence in building useful models for real drug-discovery applications.

2.
J Cheminform ; 13(1): 59, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391475

RESUMO

Scoring functions for the prediction of protein-ligand binding affinity have seen renewed interest in recent years when novel machine learning and deep learning methods started to consistently outperform classical scoring functions. Here we explore the use of atomic environment vectors (AEVs) and feed-forward neural networks, the building blocks of several neural network potentials, for the prediction of protein-ligand binding affinity. The AEV-based scoring function, which we term AEScore, is shown to perform as well or better than other state-of-the-art scoring functions on binding affinity prediction, with an RMSE of 1.22 pK units and a Pearson's correlation coefficient of 0.83 for the CASF-2016 benchmark. However, AEScore does not perform as well in docking and virtual screening tasks, for which it has not been explicitly trained. Therefore, we show that the model can be combined with the classical scoring function AutoDock Vina in the context of [Formula: see text]-learning, where corrections to the AutoDock Vina scoring function are learned instead of the protein-ligand binding affinity itself. Combined with AutoDock Vina, [Formula: see text]-AEScore has an RMSE of 1.32 pK units and a Pearson's correlation coefficient of 0.80 on the CASF-2016 benchmark, while retaining the docking and screening power of the underlying classical scoring function.

3.
J Cheminform ; 13(1): 43, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108002

RESUMO

Molecular docking computationally predicts the conformation of a small molecule when binding to a receptor. Scoring functions are a vital piece of any molecular docking pipeline as they determine the fitness of sampled poses. Here we describe and evaluate the 1.0 release of the Gnina docking software, which utilizes an ensemble of convolutional neural networks (CNNs) as a scoring function. We also explore an array of parameter values for Gnina 1.0 to optimize docking performance and computational cost. Docking performance, as evaluated by the percentage of targets where the top pose is better than 2Å root mean square deviation (Top1), is compared to AutoDock Vina scoring when utilizing explicitly defined binding pockets or whole protein docking. GNINA, utilizing a CNN scoring function to rescore the output poses, outperforms AutoDock Vina scoring on redocking and cross-docking tasks when the binding pocket is defined (Top1 increases from 58% to 73% and from 27% to 37%, respectively) and when the whole protein defines the binding pocket (Top1 increases from 31% to 38% and from 12% to 16%, respectively). The derived ensemble of CNNs generalizes to unseen proteins and ligands and produces scores that correlate well with the root mean square deviation to the known binding pose. We provide the 1.0 version of GNINA under an open source license for use as a molecular docking tool at https://github.com/gnina/gnina .

4.
J Cheminform ; 12(1): 49, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-33431033

RESUMO

Root mean square displacement (RMSD) calculations play a fundamental role in the comparison of different conformers of the same ligand. This is particularly important in the evaluation of protein-ligand docking, where different ligand poses are generated by docking software and their quality is usually assessed by RMSD calculations. Unfortunately, many RMSD calculation tools do not take into account the symmetry of the molecule, remain difficult to integrate flawlessly in cheminformatics and machine learning pipelines-which are often written in Python-or are shipped within large code bases. Here we present a new open-source RMSD calculation tool written in Python, designed to be extremely lightweight and easy to integrate into existing software.

5.
J Chem Theory Comput ; 14(6): 2834-2842, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29624388

RESUMO

We present here our implementation of a time-reversible, multiple time step (MTS) method for full QM and hybrid QM/MM Born-Oppenheimer molecular dynamics simulations. The method relies on a fully flexible combination of electronic structure methods, from density functional theory to wave function-based quantum chemistry methods, to evaluate the nuclear forces in the reference and in the correction steps. The possibility of combining different electronic structure methods is based on the observation that exchange and correlation terms only contribute to low frequency modes of nuclear forces. We show how a pair of low/high level electronic structure methods that individually would lead to very different system properties can be efficiently combined in the reference and correction steps of this MTS scheme. The current MTS implementation makes it possible to perform highly accurate ab initio molecular dynamics simulations at reduced computational cost. Stable and accurate trajectories were obtained with time steps of several femtoseconds, similar to and even exceeding the ones usually adopted in classical molecular dynamics, in particular when using a generalized Langevin stochastic thermostat. Compared to the standard Velocity Verlet integration, the present MTS scheme allows for a 5- to 6-fold overall speedup, at an unaltered level of accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...