Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(4): 2212-2223, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38467019

RESUMO

Macrophages are innate immune cells that interact with complex extracellular matrix environments, which have varied stiffness, composition, and structure, and such interactions can lead to the modulation of cellular activity. Collagen is often used in the culture of immune cells, but the effects of substrate functionalization conditions are not typically considered. Here, we show that the solvent system used to attach collagen onto a hydrogel surface affects its surface distribution and organization, and this can modulate the responses of macrophages subsequently cultured on these surfaces in terms of their inflammatory activation and expression of adhesion and mechanosensitive molecules. Collagen was solubilized in either acetic acid (Col-AA) or N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) (Col-HEP) solutions and conjugated onto soft and stiff polyacrylamide (PA) hydrogel surfaces. Bone marrow-derived macrophages cultured under standard conditions (pH 7.4) on the Col-HEP-derived surfaces exhibited stiffness-dependent inflammatory activation; in contrast, the macrophages cultured on Col-AA-derived surfaces expressed high levels of inflammatory cytokines and genes, irrespective of the hydrogel stiffness. Among the collagen receptors that were examined, leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) was the most highly expressed, and knockdown of the Lair-1 gene enhanced the secretion of inflammatory cytokines. We found that the collagen distribution was more homogeneous on Col-AA surfaces but formed aggregates on Col-HEP surfaces. The macrophages cultured on Col-AA PA hydrogels were more evenly spread, expressed higher levels of vinculin, and exerted higher traction forces compared to those of cells on Col-HEP. These macrophages on Col-AA also had higher nuclear-to-cytoplasmic ratios of yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), key molecules that control inflammation and sense substrate stiffness. Our results highlight that seemingly slight variations in substrate deposition for immunobiology studies can alter critical immune responses, and this is important to elucidate in the broader context of immunomodulatory biomaterial design.


Assuntos
Colágeno , Matriz Extracelular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Hidrogéis/metabolismo , Citocinas/metabolismo
2.
Sci Signal ; 16(783): eadc9656, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130167

RESUMO

Innate immune cells are responsible for eliminating foreign infectious agents and cellular debris, and their ability to perceive, respond to, and integrate biochemical and mechanical cues from their microenvironment eventually determines their behavior. In response to tissue injury, pathogen invasion, or a biomaterial implant, immune cells activate many pathways to initiate inflammation in the tissue. In addition to common inflammatory pathways, studies have demonstrated the role of the mechanosensitive proteins and transcriptional coactivators YAP and TAZ (YAP/TAZ) in inflammation and immunity. We review our knowledge of YAP/TAZ in controlling inflammation and immunity in innate immune cells. Furthermore, we discuss the roles of YAP/TAZ in inflammatory diseases, wound healing, and tissue regeneration and how they integrate mechanical cues with biochemical signaling during disease progression. Last, we comment on possible approaches that can be exploited to harness the therapeutic potential of YAP/TAZ in inflammatory diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Inflamação , Imunidade Inata
3.
Biomater Sci ; 11(2): 596-610, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36476811

RESUMO

Cancer vaccine immunotherapy facilitates the immune system's recognition of tumor-associated antigens, and the biomolecular design of these vaccines using nanoparticles is one important approach towards obtaining strong anti-tumor responses. Following activation of dendritic cells (DCs), a robust CD8+ T cell-mediated adaptive immune response is critical for tumor elimination. While the role of efficient antigen-presenting myeloid DCs (mDCs) is conventionally attributed towards vaccine efficacy, participation by highly cytokine-producing plasmacytoid DCs (pDCs) is less understood and is often overlooked. We examined vaccines based on the E2 protein nanoparticle platform that delivered encapsulated TLR9 agonist bacterial-like DNA (CpG1826 or CpG1018) or TLR7 agonist viral ssRNA to determine their efficacy over free agonists in activating both mDCs and pDCs for antigen presentation. Although mDCs were only activated by nanoparticle-encapsulated TLR9 agonists, pDCs were activated by all the individually tested constructs, and CpG1826 was shown to induce pDC cytokine production. Transfer of secreted factors from pDCs that were stimulated with a vaccine formulation comprising peptide antigen and CpG1826 enhanced mDC display of the antigen, particularly when delivered in nanoparticles. Only when treated with nanoparticle-conjugated vaccine could pDCs secrete factors to induce antigen display on naïve mDCs. These results reveal that pDCs can aid mDCs, highlighting the importance of activating both pDCs and mDCs in designing effective cancer vaccines, and demonstrate the advantage of using nanoparticle-based vaccine delivery.


Assuntos
Neoplasias , Vacinas , Humanos , Receptor Toll-Like 9/metabolismo , Citocinas/metabolismo , Linfócitos T CD8-Positivos , Neoplasias/metabolismo , Células Dendríticas
4.
Mater Today Bio ; 17: 100455, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36304975

RESUMO

Bioluminescence imaging has advantages over fluorescence imaging, such as minimal photobleaching and autofluorescence, and greater signal-to-noise ratios in many complex environments. Although significant achievements have been made in luciferase engineering for generating bright and stable reporters, the full capability of luciferases for nanoparticle tracking has not been comprehensively examined. In biocatalysis, enhanced enzyme performance after immobilization on nanoparticles has been reported. Thus, we hypothesized that by assembling luciferases onto a nanoparticle, the resulting complex could lead to substantially improved imaging properties. Using a modular bioconjugation strategy, we attached NanoLuc (NLuc) or Akaluc bioluminescent proteins to a protein nanoparticle platform (E2), yielding nanoparticles NLuc-E2 and Akaluc-E2, both with diameters of ∼45 â€‹nm. Although no significant differences were observed between different conditions involving Akaluc and Akaluc-E2, free NLuc at pH 5.0 showed significantly lower emission values than free NLuc at pH 7.4. Interestingly, NLuc immobilization on E2 nanoparticles (NLuc-E2) emitted increased luminescence at pH 7.4, and at pH 5.0 showed over two orders of magnitude (>200-fold) higher luminescence (than free NLuc), expanding the potential for imaging detection using the nanoparticle even upon endocytic uptake. After uptake by macrophages, the resulting luminescence with NLuc-E2 nanoparticles was up to 7-fold higher than with free NLuc at 48 â€‹h. Cells incubated with NLuc-E2 could also be imaged using live bioluminescence microscopy. Finally, biodistribution of nanoparticles into lymph nodes was detected through imaging using NLuc-E2, but not with conventionally-labeled fluorescent E2. Our data demonstrate that NLuc-bound nanoparticles have advantageous properties that can be utilized in applications ranging from single-cell imaging to in vivo biodistribution.

6.
RSC Adv ; 12(13): 7742-7756, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424752

RESUMO

In the tumor micro-environment, tumor associated macrophages (TAMs) represent a predominant component of the total tumor mass, and TAMs play a complex and diverse role in cancer pathogenesis with potential for either tumor suppressive, or tumor promoting biology. Thus, understanding macrophage localization and function are essential for cancer diagnosis and treatment. Typically, tissue biopsy is used to evaluate the density and polarization of TAMs, but provides a limited "snapshot" in time of a dynamic and potentially heterogeneous tumor immune microenvironment. Imaging has the potential for three-dimensional mapping; however, there is a paucity of macrophage-targeted contrast agents to specifically detect TAM subtypes. We have previously found that sulfated-dextran coated iron oxide nanoparticles (SDIO) can target macrophage scavenger receptor A (SR-A, also known as CD204). Since CD204 (SR-A) is considered a biomarker for the M2 macrophage polarization, these SDIO might provide M2-specific imaging probes for MRI. In this work, we investigate whether SDIO can label M2-polarized cells in vitro. We evaluate the effect of degree of sulfation on uptake by primary cultured bone marrow derived macrophages (BMDM) and found that a higher degree of sulfation led to higher uptake, but there were no differences across the subtypes. Further analysis of the BMDM showed similar SR-A expression across stimulation conditions, suggesting that this classic model for macrophage subtypes may not be ideal for definitive M2 subtype marker expression, especially SR-A. We further examine the localization of SDIO in TAMs in vivo, in the mammary fat pad mouse model of breast cancer. We demonstrate that uptake by TAMs expressing SR-A scales with degree of sulfation, consistent with the in vitro studies. The TAMs demonstrate M2-like function and secrete Arg-1 but not iNOS. Uptake by these M2-like TAMs is validated by immunohistochemistry. SDIO show promise as a valuable addition to the toolkit of imaging probes targeted to different biomarkers for TAMs.

7.
Cartilage ; 13(1): 19476035221081466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35313741

RESUMO

OBJECTIVE: Tissue-engineered cartilage implants must withstand the potential inflammatory and joint loading environment for successful long-term repair of defects. The work's objectives were to develop a novel, direct cartilage-macrophage co-culture system and to characterize interactions between self-assembled neocartilage and differentially stimulated macrophages. DESIGN: In study 1, it was hypothesized that the proinflammatory response of macrophages would intensify with increasing construct stiffness; it was expected that the neocartilage would display a decrease in mechanical properties after co-culture. In study 2, it was hypothesized that bioactive factors would protect neocartilage properties during macrophage co-culture. Also, it was hypothesized that interleukin 10 (IL-10)-stimulated macrophages would improve neocartilage mechanical properties compared to lipopolysaccharide (LPS)-stimulated macrophages. RESULTS: As hypothesized, stiffer neocartilage elicited a heightened proinflammatory macrophage response, increasing tumor necrosis factor alpha (TNF-α) secretion by 5.47 times when LPS-stimulated compared to construct-only controls. Interestingly, this response did not adversely affect construct properties for the stiffest neocartilage but did correspond to a significant decrease in aggregate modulus for soft and medium stiffness constructs. In addition, bioactive factor-treated constructs were protected from macrophage challenge compared to chondrogenic medium-treated constructs, but IL-10 did not improve neocartilage properties, although stiff constructs appeared to bolster the anti-inflammatory nature of IL-10-stimulated macrophages. However, co-culture of bioactive factor-treated constructs with LPS-treated macrophages reduced TNF-α secretion by over 4 times compared to macrophage-only controls. CONCLUSIONS: In conclusion, neocartilage stiffness can mediate macrophage behavior, but stiffness and bioactive factors prevent macrophage-induced degradation. Ultimately, this co-culture system could be utilized for additional studies to develop the burgeoning field of cartilage mechano-immunology.


Assuntos
Cartilagem Articular , Condrócitos , Cartilagem Articular/fisiologia , Condrócitos/metabolismo , Técnicas de Cocultura , Interleucina-10/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Fator de Necrose Tumoral alfa
8.
ACS Nano ; 16(2): 3311-3322, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35080856

RESUMO

Natural load-bearing mammalian tissues, such as cartilage and ligaments, contain ∼70% water yet can be mechanically stiff and strong due to the highly templated structures within. Here, we present a bioinspired approach to significantly stiffen and strengthen biopolymer hydrogels and films through the combination of nanoscale architecture and templated microstructure. Imprinted submicrometer pillar arrays absorb energy and deflect cracks. The produced chitosan hydrogels show nanofiber chains aligned by nanopillar topography, subsequently templating the microstructure throughout the film. These templated nanopillar chitosan hydrogels mechanically outperform unstructured flat hydrogels, with increases in the moduli of ∼160%, up to ∼20 MPa, and work at break of ∼450%, up to 8.5 MJ m-3. Furthermore, the strength at break increases by ∼350%, up to ∼37 MPa, and it is one of the strongest hydrogels yet reported. The nanopillar templating strategy is generalizable to other biopolymers capable of forming oriented domains and strong interactions. Overall, this process yields hydrogel films that demonstrate mechanical performance comparable to that of other stiff, strong hydrogels and natural tissues.


Assuntos
Quitosana , Nanofibras , Animais , Biopolímeros/química , Cartilagem , Quitosana/química , Hidrogéis/química , Nanofibras/química
9.
Biomaterials ; 279: 121236, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34753038

RESUMO

Macrophages are mechanosensitive cells that can exquisitely fine-tune their function in response to their microenvironment. While macrophage polarization results in concomitant changes in cell morphology and epigenetic reprogramming, how biophysically-induced signaling cascades contribute to gene regulatory programs that drive polarization remains unknown. We reveal a cytoskeleton-dependent Src-H3 acetylation (H3Ac) axis responsible for inflammation-associated histone hyperacetylation. Inflammatory stimuli caused increases in traction forces, Src activity and H3Ac marks in macrophages, accompanied by reduced cell elongation and motility. These effects were curtailed following disruption of H3Ac-signaling through either micropattern-induced cell elongation or inhibition of H3Ac readers (BRD proteins) directly. Src activation relieves the suppression of p300 histone acetyltransferase (HAT) activity by PKCδ. Furthermore, while inhibition of Src reduced p300 HAT activity and H3Ac marks globally, local H3Ac levels within the Src promoter were increased, suggesting H3Ac regulates Src levels through feedback. Together, our study reveals an adhesome-to-epigenome regulatory nexus underlying macrophage mechanosensation, where Src modulates H3Ac-associated epigenetic signaling as a means of tuning inflammatory gene activity and macrophage fate decisions in response to microenvironmental cues.


Assuntos
Histona Acetiltransferases , Histonas , Acetilação , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Macrófagos/metabolismo , Transdução de Sinais
10.
Front Immunol ; 12: 689397, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630381

RESUMO

Macrophages are versatile cells of the innate immune system that perform diverse functions by responding to dynamic changes in their microenvironment. While the effects of soluble cues, including cytokines and chemokines, have been widely studied, the effects of physical cues, including mechanical stimuli, in regulating macrophage form and function are less well understood. In this study, we examined the effects of static and cyclic uniaxial stretch on macrophage inflammatory and healing activation. We found that cyclic stretch altered macrophage morphology and responses to IFNγ/LPS and IL4/IL13. Interestingly, we found that both static and cyclic stretch suppressed IFNγ/LPS induced inflammation. In contrast, IL4/IL13 mediated healing responses were suppressed with cyclic but enhanced with static stretch conditions. Mechanistically, both static and cyclic stretch increased expression of the integrin CD11b (αM integrin), decreased expression of the mechanosensitive ion channel Piezo1, and knock down of either CD11b or Piezo1 through siRNA abrogated stretch-mediated changes in inflammatory responses. Moreover, we found that knock down of CD11b enhanced the expression of Piezo1, and conversely knock down of Piezo1 enhanced CD11b expression, suggesting the potential for crosstalk between integrins and ion channels. Finally, stretch-mediated differences in macrophage activation were also dependent on actin, since pharmacological inhibition of actin polymerization abrogated the changes in activation with stretch. Together, this study demonstrates that the physical environment synergizes with biochemical cues to regulate macrophage morphology and function, and suggests a role for CD11b and Piezo1 crosstalk in mechanotransduction in macrophages.


Assuntos
Antígeno CD11b/imunologia , Canais Iônicos/imunologia , Macrófagos/imunologia , Mecanotransdução Celular , Animais , Sobrevivência Celular , Células Cultivadas , Feminino , Ativação de Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
Biomater Sci ; 9(23): 7851-7861, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34514479

RESUMO

Evaluating the host immune response to biomaterials is an essential step in the development of medical devices and tissue engineering strategies. To aid in this process, in vitro studies, whereby immune cells such as macrophages are cultured on biomaterials, can often expedite high throughput testing of many materials prior to implantation. While most studies to date utilize murine or human cells, the use of porcine macrophages has been less well described, despite the prevalent use of porcine models in medical device and tissue engineering development. In this study, we describe the isolation and characterization of porcine bone marrow- and peripheral blood-derived macrophages, and their interactions with biomaterials. We confirmed the expression of the macrophage surface markers CD68 and F4/80 and characterized the porcine macrophage response to the inflammatory stimulus, bacterial lipopolysaccharide. Finally, we investigated the inflammatory and fusion response of porcine macrophages cultured on different stiffness hydrogels, and we found that stiffer hydrogels enhanced inflammatory activation by more than two-fold and promoted fusion to form foreign body giant cells. Together, this study establishes the use of porcine macrophages in biomaterial testing and reveals a stiffness-dependent effect on biomaterial-induced giant cell formation.


Assuntos
Materiais Biocompatíveis , Macrófagos , Suínos , Animais , Hidrogéis , Teste de Materiais , Engenharia Tecidual
12.
Nat Commun ; 12(1): 3256, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059671

RESUMO

Macrophages perform diverse functions within tissues during immune responses to pathogens and injury, but molecular mechanisms by which physical properties of the tissue regulate macrophage behavior are less well understood. Here, we examine the role of the mechanically activated cation channel Piezo1 in macrophage polarization and sensing of microenvironmental stiffness. We show that macrophages lacking Piezo1 exhibit reduced inflammation and enhanced wound healing responses. Additionally, macrophages expressing the transgenic Ca2+ reporter, Salsa6f, reveal that Ca2+ influx is dependent on Piezo1, modulated by soluble signals, and enhanced on stiff substrates. Furthermore, stiffness-dependent changes in macrophage function, both in vitro and in response to subcutaneous implantation of biomaterials in vivo, require Piezo1. Finally, we show that positive feedback between Piezo1 and actin drives macrophage activation. Together, our studies reveal that Piezo1 is a mechanosensor of stiffness in macrophages, and that its activity modulates polarization responses.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Reação a Corpo Estranho/imunologia , Canais Iônicos/metabolismo , Macrófagos/imunologia , Cicatrização/imunologia , Actinas/metabolismo , Animais , Células Cultivadas , Microambiente Celular/imunologia , Modelos Animais de Doenças , Retroalimentação Fisiológica , Feminino , Humanos , Canais Iônicos/genética , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Mecanotransdução Celular/imunologia , Camundongos , Cultura Primária de Células , Tela Subcutânea/cirurgia
13.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33277245

RESUMO

Macrophages are innate immune cells that adhere to the extracellular matrix within tissues. However, how matrix properties regulate their function remains poorly understood. Here, we report that the adhesive microenvironment tunes the macrophage inflammatory response through the transcriptional coactivator YAP. We find that adhesion to soft hydrogels reduces inflammation when compared to adhesion on stiff materials and is associated with reduced YAP expression and nuclear localization. Substrate stiffness and cytoskeletal polymerization, but not adhesive confinement nor contractility, regulate YAP localization. Furthermore, depletion of YAP inhibits macrophage inflammation, whereas overexpression of active YAP increases inflammation. Last, we show in vivo that soft materials reduce expression of inflammatory markers and YAP in surrounding macrophages when compared to stiff materials. Together, our studies identify YAP as a key molecule for controlling inflammation and sensing stiffness in macrophages and may have broad implications in the regulation of macrophages in health and disease.


Assuntos
Mecanotransdução Celular , Proteínas de Sinalização YAP , Matriz Extracelular/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos , Mecanotransdução Celular/fisiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-32719788

RESUMO

The interaction between collagen/collagen-like peptides and the commonly expressed immune cell receptor LAIR-1 (leukocyte-associated immunoglobulin-like receptor-1) regulates and directs immune responses throughout the body. Understanding and designing these interactions within the context of biomaterials could advance the development of materials used in medical applications. In this study, we investigate the immunomodulatory effects of biomaterials engineered to display a human collagen III-derived ligand peptide (LAIR1-LP) that targets LAIR-1. Specifically, we examine the effects of LAIR1-LP functionalized surfaces on uptake of polymeric particles and cell debris by macrophages polarized toward inflammatory or healing phenotypes. We observed that culture of macrophages on LAIR1-LP functionalized surfaces increased their uptake of PLGA micro- and nano-particles, as well as apoptotic fibroblasts, while reducing their secretion of TNFα in response to LPS/IFNγ pro-inflammatory stimulation, when compared to cells seeded on control surfaces. To investigate the role of LAIR-1 in the observed LAIR1-LP-induced effects, we used siRNA to knock down LAIR-1 expression and found that cells lacking LAIR-1 exhibited enhanced particle uptake on LAIR1-LP and control surfaces. Furthermore, analysis of gene expression showed that LAIR-1 knockdown led to increase expression of other receptors involved in cell uptake, including CD-36, SRA-1, and beta-2 integrin. Together, our study suggests that LAIR1-LP enhances macrophage uptake potentially through interactions with collagen-domain binding surface receptors, and inhibits inflammation through interaction with LAIR-1.

15.
APL Bioeng ; 3(1): 016103, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31069336

RESUMO

Macrophages are versatile cells of the innate immune system that can adopt a variety of functional phenotypes depending on signals in their environment. In previous work, we found that culture of macrophages on fibrin, the provisional extracellular matrix protein, inhibits their inflammatory activation when compared to cells cultured on polystyrene surfaces. Here, we sought to investigate the role of matrix stiffness in the regulation of macrophage activity by manipulating the mechanical properties of fibrin. We utilize a photo-initiated crosslinking method to introduce dityrosine crosslinks to a fibrin gel and confirm an increase in gel stiffness through active microrheology. We observe that matrix crosslinking elicits distinct changes in macrophage morphology, integrin expression, migration, and inflammatory activation. Macrophages cultured on a stiffer substrate exhibit greater cell spreading and expression of αM integrin. Furthermore, macrophages cultured on crosslinked fibrin exhibit increased motility. Finally, culture of macrophages on photo-crosslinked fibrin enhances their inflammatory activation compared to unmodified fibrin, suggesting that matrix crosslinking regulates the functional activation of macrophages. These findings provide insight into how the physical properties of the extracellular matrix might control macrophage behavior during inflammation and wound healing.

16.
J Leukoc Biol ; 106(2): 283-299, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30861205

RESUMO

Macrophages perform critical functions for homeostasis and immune defense in tissues throughout the body. These innate immune cells are capable of recognizing and clearing dead cells and pathogens, and orchestrating inflammatory and healing processes that occur in response to injury. In addition, macrophages are involved in the progression of many inflammatory diseases including cardiovascular disease, fibrosis, and cancer. Although it has long been known that macrophages respond dynamically to biochemical signals in their microenvironment, the role of biophysical cues has only recently emerged. Furthermore, many diseases that involve macrophages are also characterized by changes to the tissue biophysical environment. This review will discuss current knowledge about the effects of biophysical cues including matrix stiffness, material topography, and applied mechanical forces, on macrophage behavior. We will also describe the role of molecules that are known to be important for mechanotransduction, including adhesion molecules, ion channels, as well as nuclear mediators such as transcription factors, scaffolding proteins, and epigenetic regulators. Together, this review will illustrate a developing role of biophysical cues in macrophage biology, and also speculate upon molecular targets that may potentially be exploited therapeutically to treat disease.


Assuntos
Suscetibilidade a Doenças , Fenômenos do Sistema Imunitário , Imunomodulação , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Adesão Celular , Sinais (Psicologia) , Epigênese Genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Canais Iônicos/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Mecanotransdução Celular , Transdução de Sinais
17.
Acta Biomater ; 47: 14-24, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27662809

RESUMO

Fibrin is a major component of the provisional extracellular matrix formed during tissue repair following injury, and enables cell infiltration and anchoring at the wound site. Macrophages are dynamic regulators of this process, advancing and resolving inflammation in response to cues in their microenvironment. Although much is known about how soluble factors such as cytokines and chemokines regulate macrophage polarization, less is understood about how insoluble and adhesive cues, specifically the blood coagulation matrix fibrin, influence macrophage behavior. In this study, we observed that fibrin and its precursor fibrinogen elicit distinct macrophage functions. Culturing macrophages on fibrin gels fabricated by combining fibrinogen with thrombin stimulated secretion of the anti-inflammatory cytokine, interleukin-10 (IL-10). In contrast, exposure of macrophages to soluble fibrinogen stimulated high levels of inflammatory cytokine tumor necrosis factor alpha (TNF-α). Macrophages maintained their anti-inflammatory behavior when cultured on fibrin gels in the presence of soluble fibrinogen. In addition, adhesion to fibrin matrices inhibited TNF-α production in response to stimulation with LPS and IFN-γ, cytokines known to promote inflammatory macrophage polarization. Our data demonstrate that fibrin exerts a protective effect on macrophages, preventing inflammatory activation by stimuli including fibrinogen, LPS, and IFN-γ. Together, our study suggests that the presentation of fibrin(ogen) may be a key switch in regulating macrophage phenotype behavior, and this feature may provide a valuable immunomodulatory strategy for tissue healing and regeneration. STATEMENT OF SIGNIFICANCE: Fibrin is a fibrous protein resulting from blood clotting and provides a provisional matrix into which cells migrate and to which they adhere during wound healing. Macrophages play an important role in this process, and are needed for both advancing and resolving inflammation. We demonstrate that culture of macrophages on fibrin matrices exerts an anti-inflammatory effect, whereas the soluble precursor fibrinogen stimulates inflammatory activation. Moreover, culture on fibrin completely abrogates inflammatory signaling caused by fibrinogen or known inflammatory stimuli including LPS and IFN-γ. Together, these studies show that the presentation of fibrin(ogen) is important for regulating a switch between macrophage pro- and anti-inflammatory behavior.


Assuntos
Fibrina/farmacologia , Fibrinogênio/farmacologia , Inflamação/patologia , Macrófagos/patologia , Animais , Anti-Inflamatórios/metabolismo , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Colágeno/farmacologia , Citocinas/metabolismo , Citoproteção/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Feminino , Géis , Interferon gama , Lipopolissacarídeos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Ratos
18.
Front Plant Sci ; 7: 10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26834776

RESUMO

α-Mannosidase (α-Man), a fruit ripening-specific N-glycan processing enzyme, is involved in ripening-associated fruit softening process. However, the regulation of fruit-ripening specific expression of α-Man is not well understood. We have identified and functionally characterized the promoter of tomato (Solanum lycopersicum) α-Man to provide molecular insights into its transcriptional regulation during fruit ripening. Fruit ripening-specific activation of the α-Man promoter was revealed by analysing promoter driven expression of beta-glucuronidase (GUS) reporter in transgenic tomato. We found that RIPENING INHIBITOR (RIN), a MADS box family transcription factor acts as positive transcriptional regulator of α-Man during fruit ripening. RIN directly bound to the α-Man promoter sequence and promoter activation/α-Man expression was compromised in rin mutant fruit. Deletion analysis revealed that a promoter fragment (567 bp upstream of translational start site) that contained three CArG boxes (binding sites for RIN) was sufficient to drive GUS expression in fruits. In addition, α-Man expression was down-regulated in fruits of Nr mutant which is impaired in ethylene perception and promoter activation/α-Man expression was induced in wild type following treatment with a precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC). Although, α-Man expression was induced in rin mutant after ACC treatment, the transcript level was less as compared to ACC-treated wild type. Taken together, these results suggest RIN-mediated direct transcriptional regulation of α-Man during fruit ripening and ethylene may acts in RIN-dependent and -independent ways to regulate α-Man expression.

19.
Nature ; 510(7505): 397-401, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24828042

RESUMO

Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit ß is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit ß and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Ácidos Cetoglutáricos/farmacologia , Longevidade/fisiologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Células Jurkat , Longevidade/efeitos dos fármacos , Longevidade/genética , Camundongos , ATPases Mitocondriais Próton-Translocadoras/genética , Ligação Proteica
20.
PLoS One ; 8(9): e76029, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098759

RESUMO

Monoterpenes, which are among the major components of plant essential oils, are known for their ecological roles as well for pharmaceutical properties. Geraniol, an acyclic monoterpene induces cell cycle arrest and apoptosis/senescence in various cancer cells and plants; however, the genes involved in the process and the underlying molecular mechanisms are not well understood. In this study, we demonstrate that treatment of tomato plants with geraniol results in induction of senescence due to a substantial alteration in transcriptome. We have identified several geraniol-responsive protein encoding genes in tomato using suppression subtractive hybridization (SSH) approach. These genes comprise of various components of signal transduction, cellular metabolism, reactive oxygen species (ROS), ethylene signalling, apoptosis and DNA damage response. Upregulation of NADPH oxidase and antioxidant genes, and increase in ROS level after geraniol treatment point towards the involvement of ROS in geraniol-mediated senescence. The delayed onset of seedling death and induced expression of geraniol-responsive genes in geraniol-treated ethylene receptor mutant (Nr) suggest that geraniol-mediated senescence involves both ethylene dependent and independent pathways. Moreover, expression analysis during tomato ripening revealed that geraniol-responsive genes are also associated with the natural organ senescence process.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Terpenos/farmacologia , Transcriptoma/efeitos dos fármacos , Monoterpenos Acíclicos , Parede Celular/metabolismo , Clonagem Molecular , Etilenos/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Estrutura Molecular , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Terpenos/administração & dosagem , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...