Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comp Immunol Microbiol Infect Dis ; 109: 102185, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663213

RESUMO

To evaluate the frequency of Acinetobacter spp., belonging to both Acinetobacter calcoaceticus-baumannii (ACB) and non-ACB complex, and their antibiotic resistance profiles in veterinary medicine, a three-year (2020-2022) retrospective study was carried out on sick companion animals. Epidemiological data from different clinical canine, feline, and equine samples, were acquired. For each strain, MALDI-TOF MS identification and susceptibility to a panel of 11 antibiotics, by Kirby-Bauer and E-test methods, were performed. Out of 628 bacteriological examinations, 2.5% resulted positive for strains belonging to Acinetobacter genus. Frequencies of 2.3%, 1.9%, and 3% were obtained from both in-visiting and hospitalized dogs, cats, and horses, respectively. Members of ACB-complex accounted for 50% of isolates. Since all strains resulted susceptible to aminoglycosides and polymyxins, no pandrug-resistant (PDR) species were recorded. While 12.5% A. baumannii resulted extensively-drug resistant (XDR), a higher percentage of multidrug-resistant strains was recorded among non-ACB strains (35.5%) than ACB strains (25%). Susceptibility was observed in the same percentage in both groups (62.5%). All ACB strains confirmed their intrinsic resistances. Non-ACB species showed lower resistances against antipseudomonal penicillins plus beta-lactamase inhibitors (P=0.1306), III generation cephalosporins (P=0.0547), and tetracyclines (P=0.0209) than ACB species. Carbapenem-resistance was observed for XDR A. baumannii (12.5%) and, in particular for MDR non-ACB complex members (25%). To our knowledge, A. lactucae represents the first description in two sick dogs in Italy. Furthermore, our results emphasize the role of non-ACB-complex species as important zoonotic pathogens, which could be reservoirs of clinically relevant resistance profiles.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Doenças do Gato , Doenças do Cão , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Animais , Estudos Retrospectivos , Cães , Gatos/microbiologia , Infecções por Acinetobacter/veterinária , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/tratamento farmacológico , Cavalos/microbiologia , Antibacterianos/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Doenças do Cão/microbiologia , Doenças do Cão/tratamento farmacológico , Doenças do Gato/microbiologia , Doenças do Gato/tratamento farmacológico , Animais de Estimação/microbiologia , Acinetobacter calcoaceticus/efeitos dos fármacos , Acinetobacter calcoaceticus/genética , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/tratamento farmacológico
2.
Animals (Basel) ; 14(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38254410

RESUMO

The Polichete worms of the genus Polydora are considered very destructive for oysters, excavating channels in their shell and inducing oysters to create mud blisters in response to the irritation, interfering with their physiology and ethology. The parasite also causes important economic damage for oyster farmers, as products with a high degree of infestation cannot be commercialized. The present study aims to evaluate whether two non-invasive advanced diagnostic techniques, computed tomography scans (CT) and magnetic resonance imaging (MRI), are suitable to show the alterations induced by this parasite on live Crassostrea gigas and Ostrea edulis oyster broodstocks. A CT scan is also able to identify small lesions in the shell during the first stage of infection. MRI allows for the visualization of the advanced status of the lesions when blisters occupy the inner surface of the shell and can impact the health status and the economic value of the mollusk. Both techniques resulted in satisfactory spatial resolution, and no motion artifacts were reported, thus enabling the authors to faithfully visualize in vivo the damage caused by the parasite.

3.
Animals (Basel) ; 9(4)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987175

RESUMO

Insect meal derived from chironomid larvae and collected from aquatic environments was included in the feed of gilthead sea bream juveniles (75 ± 1.1 g) in a growth trial of 90 days. Three feeds, which were namely one control (L1) and two experimental diets (L2, L3), were analyzed and formulated as isonitrogenous (45%) and isolipidic (13%). In L1, the protein source was mainly soybean meal (32%), followed by fish meal (20%), wheat meal (20%), gluten corn (17%), and hemoglobin (11%). In L2, the proportion of soybean meal was increased (33.5%), followed by gluten corn (21%), wheat meal (14%), and hemoglobin (11%), whereas the fish meal source was reduced (15%) due to the inclusion of chironomids (5%). In L3, the proportion of fish meal was further reduced (8%) and that of chironomid meal was increased to 10% of the protein source. The L2 and L3 groups showed similar growth performances with respect to the L1 group. The feed conversion rate was favorable in all the groups, ranging from 1.18 (L1) to 1.22 (L3). Survival rates varied from 93.62% (L3) to 94.31% (L1). Feed palatability showed similar results for all diets. Although the inclusion of chironomid meal was used in small quantities, our results suggest a significant advantage in replacing 50% of the fish meal with the chironomid meal for growing gilthead sea bream fishes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...