Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(1): 107-121, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36596472

RESUMO

Complete active space self-consistent field (CASSCF) and multireference configuration interaction with Davidson correction (MRCI+Q) calculations have been carried out for lawrencium fluoride (LrF) and lawrencium oxide (LrO) molecules, detailing 19 and 20 electronic states for LrF and LrO, respectively. For LrF, two dissociation channels were considered, Lr(2P)+F(2P) and Lr(2D)+F(2P). However, due to the more complex electronic manifold of LrO, three dissociation channels were computed: Lr(2P)+O(3P), Lr(2D)+O(3P), and Lr(2P)+O(1D). In addition, equilibrium bond lengths, harmonic vibrational frequencies ωe, anharmonicity constants ωeχe, ΔG1/2 values, and excitation energies Te for the ground and several excited electronic states were calculated for both molecules, for the first time. Bond dissociation energies (BDEs) were calculated for LrF and LrO using several different levels of theory: unrestricted coupled-cluster with single, double, and perturbative triple excitations (UCCSD(T)), density functional theory (B3LYP, TPSS, M06-L, and PBE), and the correlation-consistent composite approach developed for f-elements (f-ccCA).

2.
J Comput Chem ; 44(4): 570-580, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36334029

RESUMO

The determination of gas phase thermochemical properties of per- and polyfluoroalkyl substances (PFAS) is central to understanding the long-range transport behavior of PFAS in the atmosphere. Prior gas-phase studies have reported the properties of perfluorinated sulfonic acid (PFOS) and perfluorinated octanoic acid (PFOA). Here, this study reports the gas phase enthalpies of formation of short- and long-chain PFAS and their precursor molecules determined using density functional theory (DFT) and ab initio approaches. Two density functionals, two ab initio methods and an empirical method were used to compute enthalpies of formation with the total atomization approach and an isogyric reaction. The performance of the computational methods employed in this work were validated against the experimental enthalpies of linear alkanoic acids and perfluoroalkanes. The gas-phase determinations will be useful for future studies of PFAS in the atmosphere, and the methodological choices will be helpful in the study of other PFAS.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Ácidos Sulfônicos , Termodinâmica
3.
J Chem Phys ; 157(2): 024105, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35840393

RESUMO

The f-block ab initio correlation consistent composite approach was used to predict the dissociation energies of lanthanide sulfides and selenides. Geometry optimizations were carried out using density functional theory and coupled cluster singles, doubles, and perturbative triples with one- and two-component Hamiltonians. For the two-component calculations, relativistic effects were accounted for by utilizing a third-order Douglas-Kroll-Hess Hamiltonian. Spin-orbit coupling was addressed with the Breit-Pauli Hamiltonian within a multireference configuration interaction approach. The state averaged complete active space self-consistent field wavefunctions obtained for the spin-orbit coupling energies were used to assign the ground states of diatomics, and several diagnostics were used to ascertain the multireference character of the molecules.

4.
J Chem Phys ; 154(24): 244304, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241349

RESUMO

High level multireference calculations were performed for LuF for a total of 132 states, including four dissociation channels Lu(2D) + F(2P), Lu(2P) + F(2P), and two Lu(4F) + F(2P). The 6s, 5d, and 6p orbitals of lutetium, along with the valence 2p and 3p orbitals of fluorine, were included in the active space, allowing for the accurate description of static and dynamic correlation. The Lu(4F) + F(2P) channel has intersystem spin crossings with the Lu(2P) + F(2P) and Lu(2D) + F(2P) channels, which are discussed herein. To obtain spectroscopic constants, bond lengths, and excited states, multi-reference configuration interaction (MRCI) was used at a quadruple-ζ basis set level, correlating also the 4f electrons and corresponding orbitals. Core spin-orbit (C-MRCI) calculations were performed, revealing that 13Π0- is the first excited state closely followed by 13Π0+. In addition, the dissociation energy of LuF was determined at different levels of theory, with a range of basis sets. A balance between core correlation and a relativistic treatment of electrons is fundamental to obtain an accurate description of the dissociation energy. The best prediction was obtained with a combination of coupled-cluster single, double, and perturbative triple excitations /Douglas-Kroll-Hess third order Hamiltonian methods at a complete basis set level with a zero-point energy correction, which yields a dissociation value of 170.4 kcal mol-1. Dissociation energies using density functional theory were calculated using a range of functionals and basis sets; M06-L and B3LYP provided the closest predictions to the best ab initio calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...