Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38890955

RESUMO

"Pecorino" is a typical semi-hard cheese obtained with raw or heat-treated sheep milk using procedures to valorize the raw material's chemical and microbiological properties. In the present study, using a high-throughput method of 16S rRNA gene sequencing, we assessed the evolution of the microbiome composition from milk to Pecorino-like cheese in artisanal processes using milk from Comisana and Lacaune sheep breeds. The comparative analysis of the bacterial community composition revealed significant differences in the presence and abundance of specific taxa in the milk microbiomes of the Comisana and Lacaune breeds. Next-Generation Sequencing (NGS) analysis also revealed differences in the curd microbiomes related to dairy farming practices, which have a relevant effect on the final structure of the Pecorino cheese microbiome.

2.
Front Plant Sci ; 14: 1251544, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900743

RESUMO

Fruit and vegetables hold a prominent place in dietary guidance worldwide and, following the increasing awareness of the importance of their consumption for health, their demand has been on the rise. Fruit and vegetable production needs to be reconsidered so that it can be productive and, meantime, sustainable, resilient, and can deliver healthy and nutritious diets. Microbial plant biostimulants (PBs) are a possible approach to pursuing global food security and agricultural sustainability, and their application emerged as a promising alternative or substitute to the use of agrochemicals (e.g., more efficient use of mineral and organic fertilizers or less demand and more efficient use of pesticides in integrated production systems) and as a new frontier of investigation. To the best of our knowledge, no comprehensive reviews are currently available on the effects that microbial plant biostimulants' application can have specifically on each horticultural crop. This study thus aimed to provide a state-of-the-art overview of the effects that PBs can have on the morpho-anatomical, biochemical, physiological, and functional traits of the most studied crops. It emerged that most experiments occurred under greenhouse conditions; only a few field trials were carried out. Tomato, lettuce, and basil crops have been primarily treated with Arbuscular Mycorrhizal Fungi (AMF), while plant grow-promoting rhizobacteria (PGPR) metabolites were used for crops, such as strawberries and cucumbers. The literature review also pointed out that crop response to PBs is never univocal. Complex mechanisms related to the PB type, the strain, and the crop botanical family, occur.

3.
Foods ; 12(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835220

RESUMO

Beans are an essential source of nutritional components such as plant proteins, minerals and dietary fiber, as well as of antioxidants such as phenolic compounds. Phenolic compounds are praised for their biological activities and possible benefits on human health. Since no official methods are available for phenolic compound extraction, the optimization of extraction parameters via Response Surface Methodology (RSM) has become a commonly used methodological approach for reliable determinations. This study aimed to apply RSM to optimize the ultrasound-assisted extraction procedure of phenolic compounds, including anthocyanins, from black beans. A Generally Recognized As Safe solvent (ethanol) was used. Solvent concentration, extraction time, and solvent/sample ratio were optimized to maximize two responses: Total Anthocyanin Content (TAC) and Total Phenolic Content (TPC). An ethanol concentration of 64%, 30 min extraction time, and a 50 mL/g solvent/sample ratio were identified as the optimal extraction conditions. The TAC was 71.45 ± 1.96 mg cyanidin-3-O-glucoside equivalents 100 g-1 dm, and the TPC was 60.14 ± 0.89 mg gallic acid equivalents 100 g-1 dm. Among the pigmented phenolic compounds, cyanidin-3-O-glucoside and peonidin-3-O-glucoside were identified in the extracts. Regarding phenolic acids, caffeic, sinapic, and t-ferulic acids were detected.

4.
Antioxidants (Basel) ; 12(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37507900

RESUMO

The accurate quantification of phenolic compounds (PCs) in foods has become mandatory for a reliable estimation of PCs dietary intake. However, the extraction step of these molecules from the food matrix is a challenging and complex task. To manage the current lack of an official or generally accepted procedure for the recovery of phenolics, the application of statistical and mathematical tools, such as the response surface methodology (RSM), that allow the optimization of extraction parameters and the acquisition of the best output, has become the analytical approach of choice. The aim of this study was to apply an RSM-optimized ultrasound-assisted procedure to extract phenolic compounds from artichoke (Cynara cardunculus L. var. scolymus (L.) Hegi, cultivar "Campagnano") heads. The effect of extraction time, temperature, and solvent-to-sample ratio on the profile and content of phenolic acids and flavonoids was investigated. The total phenolic content was 488.13 ± 0.56 mg GAE 100 g-1 dry matter (dm) and total flavonoid content was 375.03 ± 1.49 mg CATeq 100 g-1 dm when the optimum extraction conditions were set. The HPLC analysis showed that caffeoylquinic acid derivatives (i.e., cynarin and 1,5-O-dicaffeoylquinic acid) were the main compounds in globe artichokes. Caffeic and p-coumaric acids were also identified. In regard to flavonoids, only the flavone luteolin-7-O-glucoside was identified.

5.
Foods ; 12(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37107356

RESUMO

Quinoa's (Chenopodium quinoa Willd.) status has been recently raised from staple food crop confined to its region of origin to a globally recognized commercial food crop, widely traded in the international market. Claims on food labels may attract consumers who can therefore purchase products with nutrition, allergy/intolerance, or social and ethical claims in an effort to make healthier and more sustainable food choices. The aim of this work was (i) to investigate the nutritional quality of quinoa food products available to the Italian consumer over the e-commerce market, as emerged from nutrition labelling, and (ii) to inquire about the occurrence of nutrition, allergy and intolerance, and social and ethical claims on the packaging. To this aim, a cross-sectional survey of quinoa food products available in the Italian market was conducted. It emerged that several quinoa product categories are available and grains and pasta are the major ones. Nutrition claims are generally displayed in combination with gluten-free and social/ethical claims. Based on the nutrition facts, a higher proportion of products are eligible for nutrition claims. The comparison between the gluten-free labelled and gluten-containing quinoa products showed limited differences in the nutritional quality.

6.
Front Microbiol ; 14: 1022248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970660

RESUMO

Introduction: The fermentative production of auxin/indole 3-acetate (IAA) using selected Pantoea agglomerans strains can be a promising approach to developing novel plant biostimulants for agriculture use. Methods: By integrating metabolomics and fermentation technologies, this study aimed to define the optimal culture conditions to obtain auxin/IAA-enriched plant postbiotics using P. agglomerans strain C1. Metabolomics analysis allowed us to demonstrate that the production of a selected. Results and discussion: Array of compounds with plant growth-promoting- (IAA and hypoxanthine) and biocontrol activity (NS-5, cyclohexanone, homo-L-arginine, methyl hexadecenoic acid, and indole-3-carbinol) can be stimulated by cultivating this strain on minimal saline medium amended with sucrose as a carbon source. We applied a three-level-two-factor central composite design (CCD) based response surface methodology (RSM) to explore the impact of the independent variables (rotation speed and medium liquid-to-flask volume ratio) on the production of IAA and IAA precursors. The ANOVA component of the CCD indicated that all the process-independent variables investigated significantly impacted the auxin/IAA production by P. agglomerans strain C1. The optimum values of variables were a rotation speed of 180 rpm and a medium liquid-to-flask volume ratio of 1:10. Using the CCD-RSM method, we obtained a maximum indole auxin production of 208.3 ± 0.4 mg IAAequ/L, which was a 40% increase compared to the growth conditions used in previous studies. Targeted metabolomics allowed us to demonstrate that the IAA product selectivity and the accumulation of the IAA precursor indole-3-pyruvic acid were significantly affected by the increase in the rotation speed and the aeration efficiency.

7.
Appl Microbiol Biotechnol ; 107(5-6): 1875-1886, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773061

RESUMO

Milk is one of the most nutritionally complete foods and plays an important role in the human diet. Buffalo milk represents 15% of worldwide milk production and is an important source of bioactive compounds. Buffalo milk has a great market in the Mediterranean area, and dairy products, such as Mozzarella and Ricotta di Bufala Campana, obtained with the Italian Mediterranean buffalo milk, are acknowledged with the Protected Designation of Origin (PDO). This study aimed to characterize, using high-throughput sequencing of the 16S rRNA gene, the milk core microbiome of water buffalo rises in the Amaseno Valley included in the Mozzarella PDO region. The principal features of the core and the auxiliary buffalo milk microbiome are the predominance of Firmicutes and Lactococcus, one of the most important lactic acid bacteria (LAB) taxa in the dairy industry. The comparative analysis of the core microbiomes indicated that the milk of the Italian Mediterranean Buffalo and other mammals share the presence of Streptococcus-affiliated OTUs (operational taxonomic units). Our data also demonstrated that the core microbiome of milk samples collected from PDO and non-PDO regions differ in the number and type of taxa. KEY POINTS: • Buffalo milk and their derivate products are becoming more popular worldwide. • Dairy locations and practice management affect the structure of the milk microbiota. • Next-generation sequencing (NGS) analysis allows to identify the features of the Italian Buffalo milk microbiome.


Assuntos
Queijo , Leite , Animais , Humanos , Leite/microbiologia , Búfalos , RNA Ribossômico 16S , Itália , Queijo/análise
8.
Minerva Pediatr (Torino) ; 74(3): 251-258, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28006896

RESUMO

BACKGROUND: Childhood obesity is associated with many lifestyle factors. The aim of the present study was to evaluate the relationship between overweight/obesity and abdominal obesity and several lifestyle factors in a sample of Italian adolescents. METHODS: A representative cluster sample of 15-16-year-old adolescents in secondary school in the Lazio region (Italy) was recruited. Body weight, height and waist circumference were measured. Ponderal status was assessed by the IOTF and WHO definitions. Waist-to-height ratio (WtHR) cut-off of 0.5 was used to classify subjects with the highest cardiometabolic risk. Selected dietary habits and lifestyle characteristics were assessed by questionnaires. RESULTS: Three hundred sixty-nine adolescents (162 males and 207 females) were studied. Prevalence of overweight/obesity was 23.3%, according to the IOTF criteria with a higher percentage of males than females (30.2% vs. 17.9%; P=0.031), and 26% according to WHO references with significant differences between males and females (respectively, 33.9% vs. 19.8%; P=0.002). The WtHR≥0.5 was observed in 12.7% of the total sample with a higher percentage in males than in females (16% vs. 10.1%). Males reported an increased likelihood of being overweight or obese, as well as of having a WtHR≥0.5 (aOR 2.76 and 2.18, respectively). Adolescents that had breakfast regularly everyday were less likely to be overweight/obese and to have a WtHR≥0.5 (aOR 0.52 and 0.49, respectively). CONCLUSIONS: These results showed a high prevalence of overweight/obesity in the sample, and food habits and lifestyle not in accordance with recommendations, especially regarding breakfast. A Surveillance System of Italian adolescents should also be implemented through anthropometric measurement data to monitor the effectiveness of the policies to counteract obesity.


Assuntos
Sobrepeso , Obesidade Infantil , Adolescente , Peso Corporal , Criança , Feminino , Humanos , Estilo de Vida , Masculino , Sobrepeso/epidemiologia , Obesidade Infantil/epidemiologia , Obesidade Infantil/etiologia , Razão Cintura-Estatura
9.
Molecules ; 26(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204777

RESUMO

Phenolic compounds are currently the most investigated class of functional components in quinoa. However, great variability in their content emerged, because of differences in sample intrinsic and extrinsic characteristics; processing-induced factors; as well as extraction procedures applied. This study aimed to optimize phenolic compound extraction conditions in black quinoa seeds by Response Surface Methodology. An ultrasound-assisted extraction was performed with two different mixtures; and the effect of time; temperature; and sample-to-solvent ratio on total phenolic content (TPC) was investigated. Data were fitted to a second-order polynomial model. Multiple regression analysis and analysis of variance were used to determine the fitness of the model and optimal conditions for TPC. Three-dimensional surface plots were generated from the mathematical models. TPC at optimal conditions was 280.25 ± 3.94 mg of Gallic Acid Equivalent (GAE) 100 g-1 dm upon extraction with aqueous methanol/acetone, and 236.37 ± 5.26 mg GAE 100 g-1 dm with aqueous ethanol mixture. The phenolic profile of extracts obtained at optimal conditions was also investigated by HPLC. The two extracting procedures did not show different specificities for phenolic compounds but differed in the extraction yield.


Assuntos
Chenopodium quinoa/química , Fenóis/química , Fenóis/isolamento & purificação , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Ultrassom/métodos
10.
Foods ; 10(2)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562277

RESUMO

Quinoa (Chenopodium quinoa Willd.) has recently received increasing interest from both scientists and consumers due to its suitability in gluten-free diets, its sustainability, and its claimed superfood qualities. The aim of this paper is to systematically review up-to-date studies on quinoa functional components and anti-nutritional factors, in order to define a baseline for food scientists approaching the investigation of quinoa phytochemicals and providing evidence for the identification of healthier sustainable foods. State of the art evaluations of phytochemical contents in quinoa seeds were obtained. It emerged that phenolic compounds are the most investigated functional components, and spectrophotometric methods have been mostly applied, despite the fact that they do not provide information about single components. Saponins are the most studied among anti-nutritional factors. Betalains, tannins, and phytoecdysteroids have been poorly explored. Information on factors affecting the phytochemical content at harvesting, such as quinoa ecotypes, crop geographical location and growing conditions, are not always available. A comprehensive characterization, encompassing several classes of functional components and anti-nutritional factors, is mainly available for quinoa varieties from South America. However, defining a standard of quality for quinoa seeds is still challenging and requires a harmonization of the analytical approaches, among others.

11.
Antioxidants (Basel) ; 9(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276525

RESUMO

Reducing food loss and waste is among the efforts to relieve the pressure on natural resources and move towards more sustainable food systems. Alternative pathways of food waste management include valorization of by-products as a source of phenolic compounds for formulation of functional foods. Bakery products may act as an optimal carrier of phenolic compounds upon fortification. The aim of this paper is to present and discuss the effect that the inclusion of functional ingredients from agri-food waste can have on phenolic content and bioaccessibility in bakery products. To this aim, methods for the recovery of phenolic compounds from agri-food waste are presented, and fortification of bakery products by waste from fruits, vegetables, and seed crops is discussed. Bioaccessibility studies on fortified food products are considered to identify gaps and needs in developing sustainable healthy foods. Fruit and vegetable by-products are among the food wastes mostly valorized as functional ingredients in bakery product formulation. Agri-food waste inclusion level has shown to correlate positively with the increase in phenolic content and antioxidant capacity. Nevertheless, further studies are required to assess bioaccessibility and bioavailability of phenolic compounds in enriched food products to estimate the potential of agri-food waste in promoting human health and well-being.

12.
Front Microbiol ; 11: 539359, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162945

RESUMO

Strains belonging to Pantoea agglomerans species are known for their ability to produce metabolites that can act in synergy with auxins to induce the adventitious root (AR) formation. The latter is critically important in the agamic propagation of several woody species, including pear (Pyrus communis L.), playing a considerable role in the commercial nursery farms including those using micropropagation techniques. When grown on a medium amended with tryptophan, the plant-growth-promoting (PGP) strain P. agglomerans C1 produces a cocktail of auxin and auxin-like molecules that can be utilized as biostimulants to improve the rooting of vegetable (Solanum lycopersicum L.) and woody crop species (Prunus rootstock GF/677 and hazelnut). In this study, we evaluated the morphological and molecular responses induced by strain C1 exometabolites in microcuttings of P. communis L. cv Dar Gazi and the potential benefits arising from their application. Results showed that exometabolites by P. agglomerans C1 induced a direct and earlier emergence of roots from stem tissues and determined modifications of root morphological parameters and root architecture compared to plants treated with the synthetic hormone indole-3-butyric acid (IBA). Transcription analysis revealed differences in the temporal expression pattern of ARF17 gene when IBA and C1 exometabolites were used alone, while together they also determined changes in the expression pattern of other key auxin-regulated plant genes. These results suggest that the phenotypic and molecular changes triggered by P. agglomerans C1 are dependent on different stimulatory and inhibitory effects that auxin-like molecules and other metabolites secreted by this strain have on the gene regulatory network of the plant. This evidence supports the hypothesis that the strategies used to harness the metabolic potential of PGP bacteria are key factors in obtaining novel biostimulants for sustainable agriculture. Our results demonstrate that metabolites secreted by strain C1 can be successfully used to increase the efficiency of micropropagation of pear through tissue culture techniques.

13.
Front Microbiol ; 11: 1475, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765438

RESUMO

The species Pantoea agglomerans includes strains that are agronomically relevant for their growth-promoting or biocontrol traits. Molecular analysis demonstrated that the IPDC pathway involved in the conversion of tryptophan (Trp) to indole-3-acetic acid (IAA) is highly conserved among P. agglomerans strains at both gene and protein levels. Results also indicated that the promoter region controlling the inducible expression of ipdC gene differs from the model system Enterobacter cloacae, which is in accordance with the observation that P. agglomerans accumulates higher levels of IAA when cells are collected in the exponential phase of growth. To assess the potential applications of these microorganisms for IAA production, P. agglomerans C1, an efficient auxin-producer strain, was cultivated in 5 L fermenter so as to evaluate the effect of the medium formulation, the physiological state of the cells, and the induction timing on the volumetric productivity. Results demonstrated that higher IAA levels were obtained by using a saline medium amended with yeast extract and saccharose and by providing Trp, which acts both as a precursor and an inducer, to a culture in the exponential phase of growth. Untargeted metabolomic analysis revealed a significant effect of the carbon source on the exometabolome profile relative to IAA-related compounds and other plant bioactive signaling molecules. The IAA-enriched metabolites secreted in the culture medium by P. agglomerans C1 were used as plant biostimulants to run a series of trials at a large-scale nursery farm. Tests were carried out with in vitro and ex vitro systems following the regular protocols used for large-scale plant tree agamic propagation. Results obtained with 4,540 microcuttings of Prunus rootstock GF/677 and 1,080 plantlets of Corylus avellana L. showed that metabolites from strain C1 improved percentage of rooted-explant, number of adventitious root formation, plant survival, and quality of plant as vigor, with an increase in the leaf area between 17.5 and 42.7% compared to IBA-K (indole-3-butyric acid potassium salt)-treated plants.

14.
Antioxidants (Basel) ; 9(4)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331474

RESUMO

Consumption of food products rich in phenolic compounds has been associated to reduced risk of chronic disease onset. Daily consumed cereal-based products, such as bread and pasta, are not carriers of phenolic compounds, since they are produced with refined flour or semolina. Novel formulations of pasta have been thus proposed, in order to obtain functional products contributing to the increase in phenolic compound dietary intake. This paper aims to review the strategies used so far to formulate functional pasta, both gluten-containing and gluten-free, and compare their effect on phenolic compound content, and bioaccessibility and bioavailability thereof. It emerged that whole grain, legume and composite flours are the main substituents of durum wheat semolina in the formulation of functional pasta. Plant by-products from industrial food wastes have been also used as functional ingredients. In addition, pre-processing technologies on raw materials such as sprouting, or the modulation of extrusion/extrusion-cooking conditions, are valuable approaches to increase phenolic content in pasta. Few studies on phenolic compound bioaccessibility and bioavailability in pasta have been performed so far; however, they contribute to evaluating the usefulness of strategies used in the formulation of functional pasta.

15.
Microorganisms ; 8(2)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979031

RESUMO

Distinctive strains of Pantoea are used as soil inoculants for their ability to promote plant growth. Pantoea agglomerans strain C1, previously isolated from the phyllosphere of lettuce, can produce indole-3-acetic acid (IAA), solubilize phosphate, and inhibit plant pathogens, such as Erwinia amylovora. In this paper, the complete genome sequence of strain C1 is reported. In addition, experimental evidence is provided on how the strain tolerates arsenate As (V) up to 100 mM, and on how secreted metabolites like IAA and siderophores act as biostimulants in tomato cuttings. The strain has a circular chromosome and two prophages for a total genome of 4,846,925-bp, with a DNA G+C content of 55.2%. Genes related to plant growth promotion and biocontrol activity, such as those associated with IAA and spermidine synthesis, solubilization of inorganic phosphate, acquisition of ferrous iron, and production of volatile organic compounds, siderophores and GABA, were found in the genome of strain C1. Genome analysis also provided better understanding of the mechanisms underlying strain resistance to multiple toxic heavy metals and transmission of these genes by horizontal gene transfer. Findings suggested that strain C1 exhibits high biotechnological potential as plant growth-promoting bacterium in heavy metal polluted soils.

16.
Microbiol Resour Announc ; 8(44)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31672740

RESUMO

Pantoea agglomerans strain C1 has plant growth-promoting (PGP) traits and exhibits antimicrobial activity. The genome comprises 4.8 Mb, 4,696 protein-coding sequences, and a G+C content of 55.2%.

17.
Nutrients ; 11(5)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137859

RESUMO

Fermented foods have long been produced according to knowledge passed down from generation to generation and with no understanding of the potential role of the microorganism(s) involved in the process. However, the scientific and technological revolution in Western countries made fermentation turn from a household to a controlled process suitable for industrial scale production systems intended for the mass marketplace. The aim of this paper is to provide an up-to-date review of the latest studies which investigated the health-promoting components forming upon fermentation of the main food matrices, in order to contribute to understanding their important role in healthy diets and relevance in national dietary recommendations worldwide. Formation of antioxidant, bioactive, anti-hypertensive, anti-diabetic, and FODMAP-reducing components in fermented foods are mainly presented and discussed. Fermentation was found to increase antioxidant activity of milks, cereals, fruit and vegetables, meat and fish. Anti-hypertensive peptides are detected in fermented milk and cereals. Changes in vitamin content are mainly observed in fermented milk and fruits. Fermented milk and fruit juice were found to have probiotic activity. Other effects such as anti-diabetic properties, FODMAP reduction, and changes in fatty acid profile are peculiar of specific food categories.


Assuntos
Dieta Saudável , Fermentação , Alimentos Fermentados/microbiologia , Promoção da Saúde , Valor Nutritivo , Microbiologia de Alimentos , Humanos , Estado Nutricional , Recomendações Nutricionais , Comportamento de Redução do Risco
18.
Nutrients ; 11(1)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650530

RESUMO

The gluten-free diet (GFD) is currently the only effective treatment in remitting the symptoms of coeliac disease (CD), a chronic systemic autoimmune disorder caused by a permanent intolerance to gluten proteins in genetically susceptible individuals. The diet entails the substitution of gluten-containing products with gluten-free-rendered products. However, over recent decades the nutritional profile of gluten-free (GF) food products has been increasingly questioned within the scientific community. The aim of this paper is to review the nutritional profile of gluten-free-rendered products currently available on the market, and discuss the possible relationship thereof with the nutritional status of coeliac patients on a GFD. Key inadequacies of currently available GF products are low protein content and a high fat and salt content. More adequate levels of dietary fiber and sugar than in the past have been reported. Population studies confirmed the above mentioned inadequacies. Further efforts are required to conceive adoptable interventions for product development and reformulation in order to achieve compliance with nutritional recommendations.


Assuntos
Doença Celíaca/dietoterapia , Dieta Livre de Glúten , Necessidades Nutricionais , Valor Nutritivo , Dieta Saudável , Glutens/efeitos adversos , Humanos
19.
Compr Rev Food Sci Food Saf ; 16(5): 1101-1122, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33371611

RESUMO

The gluten-free market currently offers a range of products which can be safely consumed by patients affected by celiac disease. Nevertheless, challenges for optimal formulation remain on the way in terms of appreciable texture, flavor, and adequate nutritional characteristics. Within that framework, legumes have recently attracted attention among scientists as structure- and texture-forming agents, as source of nutrients and bioactive compounds, and as a low-glycemic-index ingredient. This work aims at providing an updated and comprehensive overview of the advantages and disadvantages in the use of legumes in gluten-free breadmaking. It also shows how legumes can contribute to tackling the main technological, nutritional, and organoleptic challenges. From this critical analysis, it emerged that viscoelastic properties of gluten-free bread batter can be enhanced by the use of carob germ, chickpea, lupin, and soybean. Gluten-free bread organoleptic acceptability can be improved by incorporating leguminous flours, such as carob, chickpea, lupin, and soybean. Moreover, a better nutritional quality of gluten-free bread can be obtained by the addition of chickpea and soybean. Gaps and needs in the use of legumes in gluten-free breadmaking emerged and were gathered together to have a sound basis for future studies. The technological and nutritional potential of sourdough should be more extensively exploited. Moreover, in vitro and in vivo studies should be prompted to understand the health benefits of bread formulated with legumes. A holistic approach, interfacing food science, nutrition, and health might help to have, on the market, products with improved sensory properties and nutritional profile.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...