Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 171: 116094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183745

RESUMO

Chronic kidney disease (CKD) development after acute kidney injury (AKI) involves multiple mechanisms, including inflammation, epithelial-mesenchymal transition (EMT), and extracellular matrix deposition, leading to progressive tubulointerstitial fibrosis. Recently, a central role for peroxisome-proliferator activated receptor (PPAR)-α has been addressed in preserving kidney function during AKI. Among endogenous lipid mediators, oleoylethanolamide (OEA), a PPAR-α agonist, has been studied for its metabolic and anti-inflammatory effects. Here, we have investigated OEA effects on folic acid (FA)-induced kidney injury in mice and the underlying mechanisms. OEA improved kidney function, normalized urine output, and reduced serum BUN, creatinine, and albuminuria. Moreover, OEA attenuated tubular epithelial injury, as shown by histological analysis, and decreased expression of neutrophil gelatinase-associated lipocalin and kidney injury molecule-1. Gene expression analysis of kidney tissue indicated that OEA limited immune cell infiltration and inflammation. Moreover, OEA significantly inhibited Wnt7b and Catnb1 gene transcription and α-smooth muscle actin expression, indicating suppression of EMT. Accordingly, OEA exhibited an anti-fibrotic effect, as shown by Masson staining and the reduced levels of transforming growth factor (TGF)-ß1, fibronectin, and collagen IV. Mechanistically, the nephroprotective effect of OEA was related to PPAR-α activation since OEA failed to exert its beneficial activity in FA-insulted PPAR-α-/- mice. PPAR-α involvement was also confirmed in HK2 cells where GW6471, a PPAR-α antagonist, blunted OEA activity on the TGF-ß1 signalling pathway and associated pro-inflammatory and fibrotic patterns. Our findings revealed that OEA counteracts kidney injury by controlling inflammation and fibrosis, making it an effective therapeutic tool for limiting AKI to CKD progression.


Assuntos
Injúria Renal Aguda , Endocanabinoides , Ácidos Oleicos , Insuficiência Renal Crônica , Camundongos , Animais , PPAR alfa , Rim , Injúria Renal Aguda/patologia , Fibrose , Inflamação/patologia , Fator de Crescimento Transformador beta1/metabolismo , Insuficiência Renal Crônica/patologia
2.
Cell Stress ; 7(12): 105-111, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38145234

RESUMO

The increased burden of senescent cells is as a well-established hallmark of aging and age-related diseases. This finding sparked significant interest in the identification of molecules capable of selectively eliminating senescent cells, so-called senolytics. Here, we fine-tuned a method for the identification of senolytics that is compatible with high-content fluorescence microscopy. We used spectral detector imaging to measure the emission spectrum of unlabeled control or senescent cells. We observed that senescent cells exhibited higher levels of autofluorescence than their non-senescent counterparts, particularly in the cytoplasmic region. Building on this result, we devised a senolytic assay based on co-culturing quiescent and senescent cells, fluorescently tagged in the nuclear region through the overexpression of H2B-GFP and H2B-RFP, respectively. We validated this approach by showing that first generation senolytics were effective in reducing the number of RFP+ nuclei leaving the count of GFP+ nuclei unaffected. The result was confirmed by flow cytometry analysis of nuclei isolated from these quiescent-senescent cell co-cultures. We found that this system enables to capture cell type-specific effects of senolytics as in the case of fisetin, which kills senescent Mouse Embryonic Fibroblasts but not senescent human melanoma SK-MEL-103 cells. This approach is amenable to genetic and chemical screening for the discovery of senolytic compounds in that it overcomes the limitations of current methods, which rely upon costly chemical reagents or fluorescence microscopy using cells labeled with fluorescent cytoplasmic probes that overlap with the autofluorescence signal emitted by senescent cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...